Existence of solutions to nonlinear advection-diffusion equation applied to Burgers’ equation using Sinc methods

被引:0
|
作者
Kamel Al-Khaled
机构
[1] Sultan Qaboos University,Dept. of Mathematics and Statistics, Faculty of Science
来源
关键词
Sinc-Galerkin method; advection-diffusion equation; numerical solution; 35A01; 35K57; 35F05; 65T60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers’ equation. The approximate solution is shown to converge to the exact solution at an exponential rate. A numerical example is given to illustrate the accuracy of the method.
引用
收藏
页码:441 / 452
页数:11
相关论文
共 50 条
  • [1] Existence of solutions to nonlinear advection-diffusion equation applied to Burgers' equation using Sinc methods
    Al-Khaled, Kamel
    APPLICATIONS OF MATHEMATICS, 2014, 59 (04) : 441 - 452
  • [2] Solutions of the advection-diffusion equation
    Tirabassi, T
    AIR POLLUTION V, 1997, : 197 - 206
  • [3] ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION
    De Loubens, R.
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 389 - 401
  • [4] GENERALIZED SCHUR METHODS FOR THE ADVECTION-DIFFUSION EQUATION
    NATAF, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 419 - 422
  • [5] A spectral embedding method applied to the advection-diffusion equation
    Elghaoui, M
    Pasquetti, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (02) : 464 - 476
  • [6] AN APPROXIMATE SOLUTION TO THE ADVECTION-DIFFUSION EQUATION AS APPLIED TO AN ESTUARY
    WANG, ST
    MCMILLAN, AF
    CHEN, BH
    JOURNAL OF HYDROLOGY, 1980, 48 (3-4) : 251 - 268
  • [7] PARAMETER ESTIMATION IN NONLINEAR COUPLED ADVECTION-DIFFUSION EQUATION
    Ferdinand, Robert R.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2007, 2 (01): : 1 - 13
  • [8] Solutions of the atmospheric advection-diffusion equation by the laplace transformation
    Moreira, D. M.
    de Vilhena, M. T.
    Tirabassi, T.
    Bodmann, B. E. J.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: TECHNIQUES AND APPLICATIONS, 2008, : 171 - +
  • [9] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [10] Meshfree methods for the nonlinear variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Liu, Zhiyong
    Yang, Jiye
    Xu, Qiuyan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 156 : 126 - 143