On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows

被引:0
|
作者
D. Chung
I. Marusic
J. P. Monty
M. Vallikivi
A. J. Smits
机构
[1] University of Melbourne,Department of Mechanical Engineering
[2] Princeton University,Department of Mechanical and Aerospace Engineering
[3] Monash University,Department of Mechanical and Aerospace Engineering
来源
Experiments in Fluids | 2015年 / 56卷
关键词
Turbulent Boundary Layer; High Reynolds Number; Pipe Flow; Wall Distance; Turbulent Pipe Flow;
D O I
暂无
中图分类号
学科分类号
摘要
Recent experiments in high Reynolds number pipe flow have shown the apparent obfuscation of the kx-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_x^{-1}$$\end{document} behaviour in spectra of streamwise velocity fluctuations (Rosenberg et al. in J Fluid Mech 731:46–63, 2013). These data are further analysed here from the perspective of the logr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log r$$\end{document} behaviour in second-order structure functions, which have been suggested as a more robust diagnostic to assess scaling behaviour. A detailed comparison between pipe flows and boundary layers at friction Reynolds numbers of Reτ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{Re}}_\tau \approx$$\end{document} 5000–20,000 reveals subtle differences. In particular, the logr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log r$$\end{document} slope of the pipe flow structure function decreases with increasing wall distance, departing from the expected 2A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2A_1$$\end{document} slope in a manner that is different to boundary layers. Here, A1≈1.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1 \approx 1.25$$\end{document}, the slope of the log law in the streamwise turbulence intensity profile at high Reynolds numbers. Nevertheless, the structure functions for both flows recover the 2A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2A_1$$\end{document} slope in the log layer sufficiently close to the wall, provided the Reynolds number is also high enough to remain in the log layer. This universality is further confirmed in very high Reynolds number data from measurements in the neutrally stratified atmospheric surface layer. A simple model that accounts for the ‘crowding’ effect near the pipe axis is proposed in order to interpret the aforementioned differences.
引用
收藏
相关论文
共 50 条
  • [1] On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows
    Chung, D.
    Marusic, I.
    Monty, J. P.
    Vallikivi, M.
    Smits, A. J.
    [J]. EXPERIMENTS IN FLUIDS, 2015, 56 (07)
  • [2] A comparison of turbulent pipe, channel and boundary layer flows
    Monty, J. P.
    Hutchins, N.
    Ng, H. C. H.
    Marusic, I.
    Chong, M. S.
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 632 : 431 - 442
  • [3] Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows
    Wei, T
    Fife, P
    Klewicki, J
    McMurtry, P
    [J]. JOURNAL OF FLUID MECHANICS, 2005, 522 : 303 - 327
  • [4] Resolvent analyses of incompressible turbulent channel, pipe and boundary-layer flows
    Zhu, Wenkai
    Chen, Xianliang
    Fu, Lin
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 106
  • [5] TURBULENT PROCESSES AS OBSERVED IN BOUNDARY LAYER AND PIPE
    SCHUBAUER, GB
    [J]. JOURNAL OF APPLIED PHYSICS, 1954, 25 (02) : 188 - 196
  • [6] On the Mechanism of Turbulent Shear Flows: A Turbulent Boundary Layer
    Vorotilin, V. P.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2021, 133 (04) : 508 - 514
  • [7] On the Mechanism of Turbulent Shear Flows: A Turbulent Boundary Layer
    V. P. Vorotilin
    [J]. Journal of Experimental and Theoretical Physics, 2021, 133 : 508 - 514
  • [8] The use of PIV in turbulent boundary layer flows
    Angele, K
    Muhammad-Klingmann, B
    [J]. IUTAM SYMPOSIUM ON GEOMETRY AND STATISTICS OF TURBULENCE, 2001, 59 : 373 - 378
  • [9] BOUNDARY LAYER ADAPTIVITY FOR INCOMPRESSIBLE TURBULENT FLOWS
    Chitale, Kedar C.
    Rasquin, Michel
    Sahni, Onkar
    Shephard, Mark S.
    Jansen, Kenneth E.
    [J]. 11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 5439 - 5459
  • [10] Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence
    Alhamdi, Sabah F. H.
    Bailey, Sean C. C.
    [J]. PHYSICS OF FLUIDS, 2017, 29 (11)