Canonical Supermultiplets and Their Koszul Duals

被引:0
|
作者
Cederwall, Martin [1 ,2 ]
Jonsson, Simon [3 ]
Palmkvist, Jakob [4 ]
Saberi, Ingmar [5 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] NORDITA, Hannes Alfvens Vag 12, S-10691 Stockholm, Sweden
[3] Univ Hertfordshire, Dept Phys Astron & Math, Hatfield AL10 9AB, Hertfordshire, England
[4] Orebro Univ, Sch Sci & Technol, S-70182 Orebro, Sweden
[5] Ludwig Maximilians Univ Munchen, Theresienstr 37, D-80333 Munich, Germany
关键词
SUPERGRAVITY; ALGEBRAS;
D O I
10.1007/s00220-024-04990-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The pure spinor superfield formalism reveals that, in any dimension and with any amount of supersymmetry, one particular supermultiplet is distinguished from all others. This "canonical supermultiplet" is equipped with an additional structure that is not apparent in any component-field formalism: a (homotopy) commutative algebra structure on the space of fields. The structure is physically relevant in several ways; it is responsible for the interactions in ten-dimensional super Yang-Mills theory, as well as crucial to any first-quantised interpretation. We study the L infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty $$\end{document} algebra structure that is Koszul dual to this commutative algebra, both in general and in numerous examples, and prove that it is equivalent to the subalgebra of the Koszul dual to functions on the space of generalised pure spinors in internal degree greater than or equal to three. In many examples, the latter is the positive part of a Borcherds-Kac-Moody superalgebra. Using this result, we can interpret the canonical multiplet as the homotopy fiber of the map from generalised pure spinor space to its derived replacement. This generalises and extends work of Movshev-Schwarz and G & aacute;lvez-Gorbounov-Shaikh-Tonks in the same spirit. We also comment on some issues with physical interpretations of the canonical multiplet, which are illustrated by an example related to the complex Cayley plane, and on possible extensions of our construction, which appear relevant in an example with symmetry type G 2 x A 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2 \times A_1$$\end{document} .
引用
收藏
页数:56
相关论文
共 50 条
  • [1] Koszul algebras and quadratic duals in Galois cohomology
    Minac, Jan
    Pasini, Federico William
    Quadrelli, Claudio
    Tan, Nguye Duy
    [J]. ADVANCES IN MATHEMATICS, 2021, 380
  • [2] QUADRATIC DUALS, KOSZUL DUAL FUNCTORS, AND APPLICATIONS
    Mazorchuk, Volodymyr
    Ovsienko, Serge
    Stroppel, Catharina
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (03) : 1129 - 1172
  • [3] On the Koszul cohomology of canonical and Prym-canonical binary curves
    Colombo, Elisabetta
    Frediani, Paola
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 1031 - 1040
  • [4] The canonical and alternate duals of a wavelet frame
    Bownik, Marcin
    Lemvig, Jakob
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (02) : 263 - 272
  • [5] Hochschild (Co)homologies of DG K-algebras and Their Koszul Duals
    Han, Yang
    Liu, Xin
    Wang, Kai
    [J]. FRONTIERS OF MATHEMATICS, 2023, 18 (05): : 1113 - 1155
  • [6] Canonical ring of a curve is Koszul: A simple proof
    Pareschi, G
    Purnaprajna, BP
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (02) : 266 - 271
  • [7] SUPERMULTIPLETS COUPLING IN COMPLEX-MANIFOLDS - EXTERIOR CANONICAL FORMALISM
    FOUSSATS, A
    REPETTO, C
    ZANDRON, OP
    ZANDRON, OS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (02) : 929 - 950
  • [8] Hochschild (Co)homologies of DG K-algebras and Their Koszul Duals
    Yang Han
    Xin Liu
    Kai Wang
    [J]. Frontiers of Mathematics, 2023, 18 : 1113 - 1155
  • [9] A NEIGHBORLY PROPERTY FOR THE CANONICAL DECOMPOSITION OF TRANSFINITE DUALS
    SERSOURI, A
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 127 (02) : 270 - 300
  • [10] DUALS AND PROPAGATORS - A CANONICAL FORMALISM FOR NONLINEAR EQUATIONS
    CACUCI, DG
    PEREZ, RB
    PROTOPOPESCU, V
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (02) : 353 - 361