A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations

被引:0
|
作者
Tadahiro Oh
Laurent Thomann
机构
[1] The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences,School of Mathematics
[2] Université de Lorraine,Institut Élie Cartan
关键词
Nonlinear Schrödinger equation; Gibbs measure; Wick ordering; Hermite polynomial; Laguerre polynomial; White noise functional; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the defocusing nonlinear Schrödinger equations on the two-dimensional compact Riemannian manifold without boundary or a bounded domain in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. Our aim is to give a pedagogic and self-contained presentation on the Wick renormalization in terms of the Hermite polynomials and the Laguerre polynomials and construct the Gibbs measures corresponding to the Wick ordered Hamiltonian. Then, we construct global-in-time solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure.
引用
收藏
页码:397 / 445
页数:48
相关论文
共 50 条