Determination of spatio-temporal distribution of Rastrelliger kanagurta using modelling techniques for optimal fishing

被引:0
|
作者
Syazwani Mohd Yusop
Muzzneena Ahmad Mustapha
Tukimat Lihan
机构
[1] Universiti Kebangsaan Malaysia,Department of Earth Sciences & Environment, Faculty of Science and Technology
来源
关键词
Maxent; GAM; Potential fishing grounds; Sea surface temperature increase;
D O I
暂无
中图分类号
学科分类号
摘要
The commercial Indian mackerel, Rastrelliger kanagurta (R. kanagurta) is widely distributed on the east coast of the Peninsular of Malaysia. Monsoon variations influence its occurrences and abundance. Understanding the variability of oceanographic physical processes and formation of habitats is vital in exploring fish resources. Temperature differences can have an important impact on ocean circulation and mechanisms that can affect the distribution and availability of fish. This study used fishing locations data of 2008 and 2009 and derived chlorophyll-a (chl-a) and sea surface temperature (SST) from satellite data (MODIS-Aqua). The objectives of this study were to determine potential fishing grounds of R. kanagurta using a presence-absence data model, Generalized Additive Model (GAM) and presence-only data model, maximum entropy (Maxent) and to assess the impact of temperature rise on its seasonal distribution based on the IPCC-AR5-RCP temperature forecast. Results showed that the GAM model had higher prediction accuracy. The constructed model predicted larger distribution areas of R. kanagurta. Maxent model, however, predicted limited distribution range concentrated only areas surrounding the point of presence. Increase of SST projected across all RCPs resulted in a decreased extent of suitable fishing habitats. Potential habitats were observed to shift out of the EEZ. Applicability of the GAM model to understand the spatio-temporal distribution of fish habitat positively contributes to optimal fishing and sustainability in the management of marine resources.
引用
收藏
相关论文
共 50 条
  • [1] Determination of spatio-temporal distribution of Rastrelliger kanagurta using modelling techniques for optimal fishing
    Yusop, Syazwani Mohd
    Mustapha, Muzzneena Ahmad
    Lihan, Tukimat
    [J]. JOURNAL OF COASTAL CONSERVATION, 2021, 25 (01)
  • [2] Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique
    Nurdin, Suhartono
    Mustapha, Muzzneena Ahmad
    Lihan, Tukimat
    Abd Ghaffar, Mazlan
    [J]. SAINS MALAYSIANA, 2015, 44 (02): : 225 - 232
  • [3] Modelling and analysis techniques for spatio-temporal requirements
    Techniques de modélisation et d’analyse d’exigences spatiotemporelles
    [J]. 2017, Lavoisier (22):
  • [4] Modelling of the spatio-temporal distribution of rat sightings in an urban environment
    Tamayo-Uria, Ibon
    Mateu, Jorge
    Diggle, Peter J.
    [J]. SPATIAL STATISTICS, 2014, 9 : 192 - 206
  • [5] Estimating Fishing Effort and Spatio-Temporal Distribution of Longline Vessels in the Indian Ocean
    Utama, Febrianto W.
    Hoenner, Xavier
    Hardesty, Britta Denise
    Peel, David
    Ford, Jessica H.
    Adams, Vanessa
    Wilcox, Chris
    [J]. FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [6] Optimal Spatio-Temporal Emergency Crew Planning for a Distribution System
    Koc, Ali
    Singhee, Amith
    Wang, Haijing
    Sabharwal, Ashish
    Mueller, Richard
    Labut, Gerard
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [7] Application of Artificial Intelligence Techniques for the Determination of Groundwater Level Using Spatio-Temporal Parameters
    Najafabadipour, Amirhossein
    Kamali, Gholamreza
    Nezamabadi-pour, Hossein
    [J]. ACS OMEGA, 2022, 7 (12): : 10751 - 10764
  • [8] Acceleration determination using spatio-temporal Fourier transform
    Cagigal, MP
    Prieto, PM
    Canales, VF
    Portilla, MG
    [J]. OPTICAL VELOCIMETRY, 1996, 2729 : 212 - 216
  • [9] Modelling spatio-temporal random fields
    Schmiegel, J
    Barndorff-Nielsen, OE
    Eggers, HC
    [J]. SOUTH AFRICAN JOURNAL OF SCIENCE, 2005, 101 (11-12) : 512 - 512
  • [10] Spatio-temporal stochastic modelling (METMAVI)
    Raquel Menezes
    A. Manuela Gonçalves
    [J]. Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1167 - 1169