Spaces of Functions of Fractional Smoothness on an Irregular Domain

被引:0
|
作者
O. V. Besov
机构
[1] Russian Academy of Sciences,V. A. Steklov Mathematics Institute
来源
Mathematical Notes | 2003年 / 74卷
关键词
function space; function of fractional smoothness; exponent of smoothness; σ-John domain; Lebesgue space; Sobolev space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the spaces Bpqs(G) and Lpqs(G) of functions with positive exponent of smoothness s > 0, defined on a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\user1{G} \subset \mathbb{R}^\user1{n} $$ \end{document}. For a domain G with specific geometric properties, we establish the embedding Bpqs(G) = Lpqs(G) ⊂ Lq(G), 1 < p < q < ∞, with the relationship between the parameters defined by these geometric properties.
引用
收藏
页码:157 / 176
页数:19
相关论文
共 50 条