A simple and practical representation of compatibility condition derived using a QR decomposition of the deformation gradient

被引:0
|
作者
Sandipan Paul
Alan D. Freed
机构
[1] Texas A&M University,Department of Mechanical Engineering
[2] U.S. Army Research Laboratory,Impact Physics Branch
来源
Acta Mechanica | 2020年 / 231卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper examines a condition for the existence and uniqueness of a finite deformation field whenever a Gram–Schmidt (QR) factorization of the deformation gradient F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {F}}$$\end{document} is used. First, a compatibility condition is derived, provided that a right Cauchy–Green tensor C=FTF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {C}} = {\mathbf {F}}^T {\mathbf {F}}$$\end{document} is prescribed. It is well-known that under this condition a vanishing of the Riemann curvature tensor R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} ensures compatibility of a finite deformation field. We derive a restriction imposed on Laplace stretch U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{{\mathcal {U}}}$$\end{document}, arising from a QR decomposition of the deformation gradient, through this compatibility condition. The derived condition on Laplace stretch is unambiguous, because a Cholesky factorization of the right Cauchy–Green tensor ensures the existence of a unique Laplace stretch. Although a vanishing of the Riemann curvature tensor provides a necessary and sufficient compatibility condition from a purely geometric point of view, this condition lacks a direct physical interpretation in a sense that one cannot identify the restrictions imposed by this condition on a quantity that can be readily measured from experiments. On the other hand, our compatibility condition restricts dependence of components of a Laplace stretch on certain spatial variables in a reference configuration. Unlike the symmetric right Cauchy–Green stretch tensor U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {U}}$$\end{document} obtained from a traditional polar decomposition of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {F}}$$\end{document}, the components of Laplace stretch can be measured from experiments. Thus, this newly derived compatibility condition provides a physical meaning to the somewhat abstract idea of the traditionally used compatibility condition, viz., a vanishing of the Riemann curvature tensor. Couplings between certain components of the Laplace stretch representing shear and elongation play a crucial role in deriving this condition. Finally, implications of this compatibility condition are discussed.
引用
收藏
页码:3289 / 3304
页数:15
相关论文
共 12 条