Khovanov–Seidel quiver algebras and bordered Floer homology

被引:0
|
作者
Denis Auroux
J. Elisenda Grigsby
Stephan M. Wehrli
机构
[1] UC Berkeley,Department of Mathematics
[2] Boston College,Mathematics Department
[3] Syracuse University,Mathematics Department
来源
Selecta Mathematica | 2014年 / 20卷
关键词
Braids; Heegaard Floer homology; Khovanov homology; Primary 57M27; Secondary 57R58; 81R50;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss a relationship between Khovanov- and Heegaard Floer-type homology theories for braids. Explicitly, we define a filtration on the bordered Heegaard–Floer homology bimodule associated to the double-branched cover of a braid and show that its associated graded bimodule is equivalent to a similar bimodule defined by Khovanov and Seidel.
引用
收藏
页码:1 / 55
页数:54
相关论文
共 50 条