Riemann–Hilbert for tame complex parahoric connections

被引:0
|
作者
P. P. Boalch
机构
[1] École Normale Supérieure & CNRS,
来源
Transformation Groups | 2011年 / 16卷
关键词
Conjugacy Class; Parabolic Subgroup; Loop Group; Higgs Bundle; Levi Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
A local Riemann–Hilbert correspondence for tame meromorphic connections on a curve compatible with a parahoric level structure will be established. Special cases include logarithmic connections on G-bundles and on parabolic G-bundles. The corresponding Betti data involves pairs (M, P) consisting of the local monodromy M ∈ G and a (weighted) parabolic subgroup P ⊂ G such that M ∈ P, as in the multiplicative Brieskorn–Grothendieck–Springer resolution (extended to the parabolic case). The natural quasi-Hamiltonian structures that arise on such spaces of enriched monodromy data will also be constructed.
引用
收藏
页码:27 / 50
页数:23
相关论文
共 50 条