Coulomb branches have symplectic singularities

被引:0
|
作者
Gwyn Bellamy
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] University Place,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that Coulomb branches for 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=4$$\end{document} supersymmetric gauge theories have symplectic singularities. This confirms a conjecture of Braverman–Finkelberg–Nakajima.
引用
收藏
相关论文
共 50 条
  • [1] Coulomb branches have symplectic singularities
    Bellamy, Gwyn
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (05)
  • [2] Symplectic resolutions, symplectic duality, and Coulomb branches
    Kamnitzer, Joel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (05) : 1515 - 1551
  • [3] Coulomb branches with complex singularities
    Philip C. Argyres
    Mario Martone
    Journal of High Energy Physics, 2018
  • [4] Coulomb branches with complex singularities
    Argyres, Philip C.
    Martone, Mario
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [5] Symplectic quotients have symplectic singularities
    Herbig, Hans-Christian
    Schwarz, Gerald W.
    Seaton, Christopher
    COMPOSITIO MATHEMATICA, 2020, 156 (03) : 613 - 646
  • [6] Sphere quantization of Higgs and Coulomb branches and Analytic Symplectic Duality
    Davide Gaiotto
    Journal of High Energy Physics, 2025 (1)
  • [7] Coulomb and Higgs branches from canonical singularities. Part 0
    Closset, Cyril
    Schafer-Nameki, Sakura
    Wang, Yi-Nan
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [8] Coulomb and Higgs branches from canonical singularities. Part 0
    Cyril Closset
    Sakura Schäfer-Nameki
    Yi-Nan Wang
    Journal of High Energy Physics, 2021
  • [9] Symplectic singularities
    Arnaud Beauville
    Inventiones mathematicae, 2000, 139 : 541 - 549
  • [10] Symplectic singularities
    Beauville, A
    INVENTIONES MATHEMATICAE, 2000, 139 (03) : 541 - 549