Consider a Hausdorff σ-compact, locally compact abelian group G. We are looking for positive almost periodic solutions of the following functional equation:
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\displaystyle f(x)=M_y\left[(A\circ f)(xy^{-1})\mu(y)\right], \quad x\in G.}$$\end{document}In this context μ is a positive almost periodic measure on G, A is a uniformly continuous function on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb R}}$$\end{document} and My[μ(y)] is the mean of μ. A more general equation which we investigate is the following
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\displaystyle f(x)=g(x)+\nu*f(x)+M_y\left[(A\circ f)(xy^{-1})\mu(y)\right], \quad x\in G,}$$\end{document}where g is a positive almost periodic function on G, μ a positive almost periodic measure, ν a positive bounded measure and A a Lipschitz function.