The Li2TeO3 (s) and Li2TeO4 (s) were synthesized using solid-state reaction route and characterized using X-ray powder diffraction techniques. Molar heat capacity measurement on Li2TeO3 (s) and Li2TeO4 (s) were carried out using differential scanning calorimeter. The molar heat capacity values were least squares analyzed, and the dependence of molar heat capacity with temperature for Li2TeO3 (s) and Li2TeO4 (s) can be given as,Cp,moTLi2TeO3,s,T/J K-1mol-1=107.56+0.05TK-2.21×106T-2K325≤TK≤675.Cp,moTLi2TeO4,s,T/J K-1mol-1=121.59+0.06TK-1.92×106T-2K325≤TK≤675.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} C^{\text{o}}_{\text{p,m}} \left( T \right)\left( {{\text{Li}}_{ 2} {\text{TeO}}_{ 3} , {\text{ s}},\;T} \right) \, /{\text{J K}}^{ - 1} {\text{mol}}^{ - 1} = \, 107.56 \, + \, 0.05\;T\left( {\text{K}} \right) \, {-} \, 2.21 \, \times \, 10^{6} \;T^{ - 2} \left( {\text{K}} \right) \left( {325 \, \le \;T\left( {\text{K}} \right) \, \le \, 675} \right). \hfill \\ C^{\text{o}}_{\text{p,m}} \left( T \right)\left( {{\text{Li}}_{ 2} {\text{TeO}}_{ 4} , {\text{ s,}}T} \right) \, /{\text{J K}}^{ - 1} {\text{mol}}^{ - 1} = 121.59 \, + \, 0.06\;T\left( {\text{K}} \right) \, {-} \, 1.92 \, \times \, 10^{6} \;T^{ - 2} \left( {\text{K}} \right) \left( {325 \, \le \;T\left( {\text{K}} \right) \, \le \, 675} \right). \hfill \\ \end{aligned}$$\end{document}From these data, other thermodynamic functions such as enthalpy increment (HTo-H298.15o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^{\text{o}}_{\text{T}} - H^{\text{o}}_{298.15}$$\end{document}), entropy (STo\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^{\text{o}}_{\text{T}}$$\end{document}) and Gibbs energy functions {−(GTo-H298.15o\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G^{\text{o}}_{\text{T}} - H^{\text{o}}_{298.15}$$\end{document}) T−1} were computed.