Brill-Noether Conjecture on Cactus Graphs

被引:0
|
作者
Phan Thi Ha Duong
机构
[1] Institute of Mathematics,
[2] Vietnam Academy of Science and Technology,undefined
来源
关键词
Brill-Noether conjecture; Cactus graph; Chip firing game; Cycle; Rank of divisors on graphs; 05C38; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
We give a proof of the combinatorial Brill-Noether conjecture for cactus graphs. This conjecture was formulated by Baker in 2008 when studying the interaction between algebraic curves theory and graph theory. By analyzing the treelike structure of cactus graphs, we produce a construction proof that is based on the Chip Firing Game theory.
引用
收藏
页码:833 / 845
页数:12
相关论文
共 50 条
  • [1] Brill-Noether Conjecture on Cactus Graphs
    Phan Thi Ha Duong
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (04) : 833 - 845
  • [2] Brill-Noether theory of maximally symmetric graphs
    Leake, Timothy
    Ranganathan, Dhruv
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 : 115 - 125
  • [3] The locus of Brill-Noether general graphs is not dense
    Jensen, David
    PORTUGALIAE MATHEMATICA, 2016, 73 (03) : 177 - 182
  • [4] Brill-Noether loci
    Teixidor i Bigas, Montserrat
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [5] A Note on Brill-Noether Existence for Graphs of Low Genus
    Atanasov, Stanislav
    Ranganathan, Dhruv
    MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (01) : 175 - 198
  • [6] ON THE BRILL-NOETHER THEOREM
    EISENBUD, D
    HARRIS, J
    LECTURE NOTES IN MATHEMATICS, 1983, 997 : 131 - 137
  • [7] The Maximal Rank Conjecture and Rank Two Brill-Noether Theory
    Farkas, Gavril
    Ortega, Angela
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (04) : 1265 - 1295
  • [8] Interpolation for Brill-Noether curves
    Larson, Eric
    Vogt, Isabel
    FORUM OF MATHEMATICS PI, 2023, 11
  • [9] The Strong Maximal Rank conjecture and higher rank Brill-Noether theory
    Cotterill, Ethan
    Alonso Gonzalo, Adrian
    Zhang, Naizhen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (01): : 169 - 205
  • [10] Nonemptiness of Brill-Noether loci
    Brambila-Paz, L
    Mercat, V
    Newstead, PE
    Ongay, F
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (06) : 737 - 760