Two-step homogeneous geodesics in pseudo-Riemannian manifolds

被引:0
|
作者
Andreas Arvanitoyeorgos
Giovanni Calvaruso
Nikolaos Panagiotis Souris
机构
[1] University of Patras,Department of Mathematics
[2] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
关键词
Homogeneous space; Pseudo-Riemannian manifold; Homogeneous geodesic; Geodesic orbit space; Two-step homogeneous geodesic; Two-step geodesic orbit space; Generalized geodesic lemma; Lorentzian Lie group; Primary 53C22; Secondary 53C30; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
Given a homogeneous pseudo-Riemannian space (G/H,⟨,⟩),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G/H,\langle \ , \ \rangle),$$\end{document} a geodesic γ:I→G/H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma :I\rightarrow G/H$$\end{document} is said to be two-step homogeneous if it admits a parametrization t=ϕ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=\phi (s)$$\end{document} (s affine parameter) and vectors X, Y in the Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document}, such that γ(t)=exp(tX)exp(tY)·o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (t)=\exp (tX)\exp (tY)\cdot o$$\end{document}, for all t∈ϕ(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \phi (I)$$\end{document}. As such, two-step homogeneous geodesics are a natural generalization of homogeneous geodesics (i.e., geodesics which are orbits of a one-parameter group of isometries). We obtain characterizations of two-step homogeneous geodesics, both for reductive homogeneous spaces and in the general case, and undertake the study of two-step g.o. spaces, that is, homogeneous pseudo-Riemannian manifolds all of whose geodesics are two-step homogeneous. We also completely determine the left-invariant metrics ⟨,⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \ ,\ \rangle$$\end{document} on the unimodular Lie group SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,{{\mathbb{R}}})$$\end{document} such that (SL(2,R),⟨,⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (SL(2,{{\mathbb{R}}}),\langle \ ,\ \rangle \big )$$\end{document} is a two-step g.o. space.
引用
收藏
页码:297 / 317
页数:20
相关论文
共 50 条