Schlesinger Transformations and Quantum R-Matrices

被引:0
|
作者
N. Manojlović
H. Samtleben
机构
[1] Área Departamental de Matemática,
[2] F. C. T.,undefined
[3] Universidade do Algarve,undefined
[4] Campus de Gambelas,undefined
[5] 8000-117 Faro,undefined
[6] Portugal. E-mail: nmanoj@ualg.pt,undefined
[7] Spinoza Instituut,undefined
[8] Universiteit Utrecht,undefined
[9] Postbus 80.195,undefined
[10] 3508 TD Utrecht,undefined
[11] The Netherlands. E-mail:H.Samtleben@phys.uu.nl,undefined
来源
关键词
Complex Plane; Explicit Expression; Classical Result; Deformation Parameter; Symmetry Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
 Schlesinger transformations are discrete monodromy preserving symmetry transformations of a meromorphic connection which shift by integers the eigenvalues of its residues. We study Schlesinger transformations for twisted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-valued connections on the torus. A universal construction is presented which gives the elementary two-point transformations in terms of Belavin's elliptic quantum R-matrix. In particular, the role of the quantum deformation parameter is taken by the difference of the two poles whose residue eigenvalues are shifted. Elementary one-point transformations (acting on the residue eigenvalues at a single pole) are constructed in terms of the classical elliptic r-matrix.
引用
收藏
页码:517 / 537
页数:20
相关论文
共 50 条