Programming parallel dense matrix factorizations with look-ahead and OpenMP

被引:1
|
作者
Sandra Catalán
Adrián Castelló
Francisco D. Igual
Rafael Rodríguez-Sánchez
Enrique S. Quintana-Ortí
机构
[1] Universidad Jaume I,Depto. Ingeniería y Ciencia de Computadores
[2] Universitat Politècnica de València,Depto. Informática de Sistemas y Computadores
[3] Universidad Complutense de Madrid,Depto. de Arquitectura de Computadores y Automática
来源
Cluster Computing | 2020年 / 23卷
关键词
Matrix factorizations; Look-ahead; Multi-threading; OpenMP; Lightweight threads; High performance computing;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a parallelization strategy for dense matrix factorization (DMF) algorithms, using OpenMP, that departs from the legacy (or conventional) solution, which simply extracts concurrency from a multi-threaded version of basic linear algebra subroutines (BLAS). The proposed approach is also different from the more sophisticated runtime-based implementations, which decompose the operation into tasks and identify dependencies via directives and runtime support. Instead, our strategy attains high performance by explicitly embedding a static look-ahead technique into the DMF code, in order to overcome the performance bottleneck of the panel factorization, and realizing the trailing update via a cache-aware multi-threaded implementation of the BLAS. Although the parallel algorithms are specified with a high level of abstraction, the actual implementation can be easily derived from them, paving the road to deriving a high performance implementation of a considerable fraction of linear algebra package (LAPACK) functionality on any multicore platform with an OpenMP-like runtime.
引用
收藏
页码:359 / 375
页数:16
相关论文
共 50 条
  • [1] Programming parallel dense matrix factorizations with look-ahead and OpenMP
    Catalan, Sandra
    Castello, Adrian
    Igual, Francisco D.
    Rodriguez-Sanchez, Rafael
    Quintana-Orti, Enrique S.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (01): : 359 - 375
  • [2] NUMA-Aware Dense Matrix Factorizations and Inversion with Look-Ahead on Multicore Processors
    Catalan, Sandra
    Igual, Francisco D.
    Rodriguez-Sanchez, Rafael
    Herrero, Jose R.
    Quintana-Orti, Enrique S.
    2022 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2022), 2022, : 91 - 99
  • [3] Further optimized look-ahead recurrences for adjacent rows in the Pade table and Toeplitz matrix factorizations
    Hochbruck, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) : 219 - 236
  • [4] On look-ahead heuristics in disjunctive logic programming
    Wolfgang Faber
    Nicola Leone
    Gerald Pfeifer
    Francesco Ricca
    Annals of Mathematics and Artificial Intelligence, 2007, 51 : 229 - 266
  • [5] On look-ahead heuristics in disjunctive logic programming
    Faber, Wolfgang
    Leone, Nicola
    Pfeifer, Gerald
    Ricca, Francesco
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2007, 51 (2-4) : 229 - 266
  • [6] Look-Ahead
    Mannan, Joya
    Cutting Tool Engineering, 2023, 75 (01):
  • [7] LOOK-AHEAD IN DYNAMIC-PROGRAMMING AND QUANTIZER LOOPS
    PARHI, KK
    1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 1989, : 1382 - 1387
  • [8] Programming parallel dense matrix factorizations and inversion for new-generation NUMA architectures
    Catalan, Sandra
    Igual, Francisco D.
    Herrero, Jose R.
    Rodriguez-Sanchez, Rafael
    Quintana-Orti, Enrique S.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 175 : 51 - 65
  • [9] FAST HYBRID PARALLEL CARRY LOOK-AHEAD ADDER
    KOSTRZEWSKI, A
    KIM, DH
    LI, Y
    EICHMANN, G
    OPTICS LETTERS, 1990, 15 (16) : 915 - 917
  • [10] LOOK-AHEAD ON PUSHDOWNS
    ENGELFRIET, J
    VOGLER, H
    INFORMATION AND COMPUTATION, 1987, 73 (03) : 245 - 279