Image change detection based on an improved rough fuzzy c-means clustering algorithm

被引:0
|
作者
Wenping Ma
Licheng Jiao
Maoguo Gong
Congling Li
机构
[1] Xidian University,Key Lab of Intelligent Perception and Image Understanding of Ministry of Education of China
关键词
Change detection; Rough set; Fuzzy cluster algorithm; Remote sensing image;
D O I
暂无
中图分类号
学科分类号
摘要
An unsupervised change detection method based on an improved rough fuzzy c-means clustering method (SRFPCM) for synthetic aperture radar and optical remote sensing images is proposed. SRFPCM incorporates the local spatial information and gray level information in a novel fuzzy way, aiming at guaranteeing noise insensitiveness and image detail preservation. Inspired by the idea of a robust fuzzy local information c-means clustering algorithm, this new algorithm can overcome the disadvantages of rough fuzzy c-means clustering algorithm and enhance the clustering performance at the same time. SRFPCM is employed to cluster the difference image into two clusters (changed and unchanged regions) and get the change map. Experimental results confirm the effectiveness of the proposed algorithm.
引用
收藏
页码:369 / 377
页数:8
相关论文
共 50 条
  • [1] Image change detection based on an improved rough fuzzy c-means clustering algorithm
    Ma, Wenping
    Jiao, Licheng
    Gong, Maoguo
    Li, Congling
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (03) : 369 - 377
  • [2] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204
  • [3] Possibilistic Rough Fuzzy C-Means Algorithm in Data Clustering and Image Segmentation
    Tripathy, B. K.
    Tripathy, Anurag
    Rajulu, Kosireddy Govinda
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 981 - 986
  • [4] Image Segmentation Based on the Fuzzy C-Means Clustering and Rough Sets
    Li, Yunsong
    Zhang, Guofeng
    Zhang, Huili
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 751 - 754
  • [5] An improved fuzzy C-means clustering algorithm based on PSO
    Niu Q.
    Huang X.
    Journal of Software, 2011, 6 (05) : 873 - 879
  • [6] An Image Segmentation Algorithm Based On Fuzzy C-Means Clustering
    Zhang Xinbo
    Jiang Li
    PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 123 - 126
  • [7] An Image Segmentation Algorithm Based on Fuzzy C-Means Clustering
    Zhang, Xin-bo
    Jiang, Li
    ICDIP 2009: INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, PROCEEDINGS, 2009, : 22 - 26
  • [8] Image Segmentation Algorithm Basel on Improved Weighted Fuzzy C-means Clustering
    Xin, Jie
    Sha, Xiuyan
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 734 - +
  • [9] MEDICAL IMAGE REGISTRATION BASED ON IMPROVED FUZZY C-MEANS CLUSTERING
    Pan, Meisen
    Jiang, Jianjun
    Zhang, Fen
    Rong, Qiusheng
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2015, 27 (04):
  • [10] Image Enhancement Method based on an Improved Fuzzy C-Means Clustering
    Yang, Libao
    Zenian, Suzelawati
    Zakaria, Rozaimi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 855 - 859