Control by Viability in a Chemotherapy Cancer Model

被引:0
|
作者
M. Serhani
H. Essaadi
K. Kassara
A. Boutoulout
机构
[1] University Moulay Ismail,TSI Team, FSJES
[2] University Moulay Ismail,TSI Team, Faculty of Sciences
[3] University Hassan II,MACS
来源
Acta Biotheoretica | 2019年 / 67卷
关键词
Cancer model; Feedback control; Viability; Set-valued analysis; 34H05; 34A60; 49 J52; 49K15; 92C50; 9C60;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this study is to provide a feedback control, called the Chemotherapy Protocol Law, with the purpose to keep the density of tumor cells that are treated by chemotherapy below a “tolerance level” Lc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_c$$\end{document}, while retaining the density of normal cells above a “healthy level” Nc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_c$$\end{document}. The mathematical model is a controlled dynamical system involving three nonlinear differential equations, based on a Gompertzian law of cell growth. By evoking viability and set-valued theories, we derive sufficient conditions for the existence of a Chemotherapy Protocol Law. Thereafter, on a suitable viability domain, we build a multifunction whose selections are the required Chemotherapy Protocol Laws. Finally, we propose a design of selection that generates a Chemotherapy Protocol Law.
引用
收藏
页码:177 / 200
页数:23
相关论文
共 50 条
  • [1] Control by Viability in a Chemotherapy Cancer Model
    Serhani, M.
    Essaadi, H.
    Kassara, K.
    Boutoulout, A.
    [J]. ACTA BIOTHEORETICA, 2019, 67 (03) : 177 - 200
  • [2] Optimal control for a stochastic model of cancer chemotherapy
    Coldman, AJ
    Murray, JM
    [J]. MATHEMATICAL BIOSCIENCES, 2000, 168 (02) : 187 - 200
  • [3] Constrained bilinear control problem: Application to a cancer chemotherapy model
    Zerrik, El Hassan
    El Boukhari, Nihale
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (04)
  • [4] Optimal control for a bilinear model with recruiting agent in cancer chemotherapy
    Ledzewicz, U
    Schättler, H
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 2762 - 2767
  • [5] CANCER CONTROL WITH CHEMOTHERAPY
    BATEMAN, JC
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 1962, 10 (09) : 721 - &
  • [6] A Chemotherapy-Diffusion Model for the Cancer Treatment and Initial Dose Control
    Abdel-Gawad, Hamdy Ibrahim
    Saad, Khaled Mohammed
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2008, 48 (03): : 395 - 410
  • [7] OPTIMAL CONTROL OF A MATHEMATICAL MODEL FOR CANCER CHEMOTHERAPY UNDER TUMOR HETEROGENEITY
    Wang, Shuo
    Schattler, Heinz
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2016, 13 (06) : 1223 - 1240
  • [8] Optimal Control on Bladder Cancer Growth Model with BCG Immunotherapy and Chemotherapy
    Dewi, C.
    Trisilowati
    [J]. SYMPOSIUM ON BIOMATHEMATICS, 2015, 1651 : 53 - 58
  • [9] Multi-objective optimal chemotherapy control model for cancer treatment
    Algoul, S.
    Alam, M. S.
    Hossain, M. A.
    Majumder, M. A. A.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (01) : 51 - 65
  • [10] Multi-objective optimal chemotherapy control model for cancer treatment
    S. Algoul
    M. S. Alam
    M. A. Hossain
    M. A. A. Majumder
    [J]. Medical & Biological Engineering & Computing, 2011, 49 : 51 - 65