Risk-averse feasible policies for large-scale multistage stochastic linear programs

被引:0
|
作者
Vincent Guigues
Claudia Sagastizábal
机构
[1] Fundação Getulio Vargas,Escola de Matemática Aplicada
[2] UFRJ,Departamento de Engenharia Industrial, Escola Politécnica
[3] IMPA – Instituto de Matemática Pura e Aplicada,undefined
来源
Mathematical Programming | 2013年 / 138卷
关键词
Stochastic programming; Chance constraints; CVaR ; Interstage dependence; Dynamic programming; 90C15; 91B30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider risk-averse formulations of stochastic linear programs having a structure that is common in real-life applications. Specifically, the optimization problem corresponds to controlling over a certain horizon a system whose dynamics is given by a transition equation depending affinely on an interstage dependent stochastic process. We put in place a rolling-horizon time consistent policy. For each time step, a risk-averse problem with constraints that are deterministic for the current time step and uncertain for future times is solved. To each uncertain constraint corresponds both a chance and a Conditional Value-at-Risk constraint. We show that the resulting risk-averse problems are numerically tractable, being at worst conic quadratic programs. For the particular case in which uncertainty appears only on the right-hand side of the constraints, such risk-averse problems are linear programs. We show how to write dynamic programming equations for these problems and define robust recourse functions that can be approximated recursively by cutting planes. The methodology is assessed and favourably compared with Stochastic Dual Dynamic Programming on a real size water-resource planning problem.
引用
收藏
页码:167 / 198
页数:31
相关论文
共 50 条
  • [1] Risk-averse feasible policies for large-scale multistage stochastic linear programs
    Guigues, Vincent
    Sagastizabal, Claudia
    [J]. MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) : 167 - 198
  • [2] Structure of risk-averse multistage stochastic programs
    Dupacova, Jitka
    Kozmik, Vaclav
    [J]. OR SPECTRUM, 2015, 37 (03) : 559 - 582
  • [3] Structure of risk-averse multistage stochastic programs
    Jitka Dupačová
    Václav Kozmík
    [J]. OR Spectrum, 2015, 37 : 559 - 582
  • [4] Risk-Averse Regret Minimization in Multistage Stochastic Programs
    Poursoltani, Mehran
    Delage, Erick
    Georghiou, Angelos
    [J]. OPERATIONS RESEARCH, 2024, 72 (04) : 1727 - 1738
  • [5] Dual SDDP for risk-averse multistage stochastic programs
    da Costa, Bernardo Freitas Paulo
    Leclere, Vincent
    [J]. OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 332 - 337
  • [6] Risk-averse multistage stochastic programs with expected conditional risk measures
    Khatami, Maryam
    Silva, Thuener
    Pagnoncelli, Bernardo K.
    Ntaimo, Lewis
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2024, 172
  • [7] STABILITY OF A CLASS OF RISK-AVERSE MULTISTAGE STOCHASTIC PROGRAMS AND THEIR DISTRIBUTIONALLY ROBUST COUNTERPARTS
    Jiang, Jie
    Chen, Zhiping
    Hu, He
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (05) : 2415 - 2440
  • [8] GUARANTEED BOUNDS FOR GENERAL NONDISCRETE MULTISTAGE RISK-AVERSE STOCHASTIC OPTIMIZATION PROGRAMS
    Maggioni, Francesca
    Pflug, Georg Ch
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) : 454 - 483
  • [9] Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty
    Zhang, Weini
    Rahimian, Hamed
    Bayraksan, Guzin
    [J]. INFORMS JOURNAL ON COMPUTING, 2016, 28 (03) : 385 - 404
  • [10] Scenario decomposition of risk-averse multistage stochastic programming problems
    Ricardo A. Collado
    Dávid Papp
    Andrzej Ruszczyński
    [J]. Annals of Operations Research, 2012, 200 : 147 - 170