An efficient and improved scheme for handwritten digit recognition based on convolutional neural network

被引:0
|
作者
Saqib Ali
Zeeshan Shaukat
Muhammad Azeem
Zareen Sakhawat
Tariq Mahmood
Khalil ur Rehman
机构
[1] Beijing University of Technology,Faculty of Information Technology
[2] University of Education,Division of Science & Technology
来源
SN Applied Sciences | 2019年 / 1卷
关键词
Handwritten digit recognition (HDR); Convolutional neural networks (CNNs); Feature extraction and classification; MNIST dataset; Deep learning; DL4J;
D O I
暂无
中图分类号
学科分类号
摘要
Character recognition from handwritten images has received greater attention in research community of pattern recognition due to vast applications and ambiguity in learning methods. Primarily, two steps including character recognition and feature extraction are required based on some classification algorithm for handwritten digit recognition. Former schemes exhibit lack of high accuracy and low computational speed for handwritten digit recognition process. The aim of the proposed endeavor was to make the path toward digitalization clearer by providing high accuracy and faster computational for recognizing the handwritten digits. The present research employed convolutional neural network as classifier, MNIST as dataset with suitable parameters for training and testing and DL4J framework for hand written digit recognition. The aforementioned system successfully imparts accuracy up to 99.21% which is higher than formerly proposed schemes. In addition, the proposed system reduces computational time significantly for training and testing due to which algorithm becomes efficient.
引用
收藏
相关论文
共 50 条
  • [1] An efficient and improved scheme for handwritten digit recognition based on convolutional neural network
    Ali, Saqib
    Shaukat, Zeeshan
    Azeem, Muhammad
    Sakhawat, Zareen
    Mahmood, Tariq
    Rehman, Khalil Ur
    [J]. SN APPLIED SCIENCES, 2019, 1 (09):
  • [2] Handwritten Digit Recognition Based on Convolutional Neural Network
    Zhang, Chao
    Zhou, Zhiyao
    Lin, Lan
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7384 - 7388
  • [3] Adhesive Handwritten Digit Recognition Algorithm Based on Improved Convolutional Neural Network
    Tang, Junyi
    Han, Ping
    Liu, Dong
    [J]. PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 388 - 392
  • [4] A Convolutional Neural Network for Handwritten Digit Recognition
    Guevara Neri, Maria Cristina
    Vergara Villegas, Osslan Osiris
    Cruz Sanchez, Vianey Guadalupe
    Nandayapa, Manuel
    Sossa Azuela, Juan Humberto
    [J]. INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2020, 11 (01): : 97 - 105
  • [5] Handwritten Digit String Recognition using Convolutional Neural Network
    Zhan, Hongjian
    Lyu, Shujing
    Lu, Yue
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3729 - 3734
  • [6] Bangla Handwritten Digit Recognition Using Convolutional Neural Network
    Rabby, A. K. M. Shahariar Azad
    Abujar, Sheikh
    Haque, Sadeka
    Hossain, Syed Akhter
    [J]. EMERGING TECHNOLOGIES IN DATA MINING AND INFORMATION SECURITY, IEMIS 2018, VOL 1, 2019, 755 : 111 - 122
  • [7] Handwritten Character Recognition Based on Improved Convolutional Neural Network
    Xue, Yu
    Tong, Yiling
    Yuan, Ziming
    Su, Shoubao
    Slowik, Adam
    Toglaw, Sam
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (02): : 497 - 509
  • [8] The Four Arithmetic Operations for Handwritten Digit Recognition Based On Convolutional Neural Network
    Wang, Kecheng
    Deng, Junwen
    Xu, Linfeng
    Tang, Cong
    Pei, Zian
    Wang, Hongtao
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7423 - 7428
  • [9] Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)
    Ahlawat, Savita
    Choudhary, Amit
    Nayyar, Anand
    Singh, Saurabh
    Yoon, Byungun
    [J]. SENSORS, 2020, 20 (12) : 1 - 18
  • [10] An Efficient Handwritten Digit Recognition Based on Convolutional Neural Networks with Orthogonal Learning Strategies
    Senthil, T.
    Rajan, C.
    Deepika, J.
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (01)