Quillen bundle and geometric prequantization of non-abelian vortices on a Riemann surface

被引:0
|
作者
RUKMINI DEY
SAMIR K PAUL
机构
[1] Harish Chandra Research Institute,School of Mathematics
[2] S.N. Bose National Centre for Basic Sciences,undefined
来源
关键词
Geometric quantization; Quillen’s determinant bundle; symplectic quotient;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prequantize the moduli space of non-abelian vortices. We explicitly calculate the symplectic form arising from L2 metric and we construct a prequantum line bundle whose curvature is proportional to this symplectic form. The prequantum line bundle turns out to be Quillen’s determinant line bundle with a modified Quillen metric. Next, as in the case of abelian vortices, we construct line bundles over the moduli space whose curvatures form a family of symplectic forms which are parametrized by Ψ0, a section of a certain bundle. The equivalence of these prequantum bundles are discussed.
引用
收藏
页码:27 / 35
页数:8
相关论文
共 50 条
  • [1] Quillen bundle and geometric prequantization of non-abellian vortices on a Riemann surface
    Dey, Rukmini
    Paul, Samir K.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (01): : 27 - 35
  • [2] Non-Abelian Vortices on Compact Riemann Surfaces
    J. M. Baptista
    [J]. Communications in Mathematical Physics, 2009, 291 : 799 - 812
  • [3] Non-Abelian Vortices on Compact Riemann Surfaces
    Baptista, J. M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (03) : 799 - 812
  • [4] Non-abelian vortices on Riemann surfaces: An integrable case
    Popov, Alexander D.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (2-3) : 139 - 148
  • [5] Non-Abelian Vortices on Riemann Surfaces: an Integrable Case
    Alexander D. Popov
    [J]. Letters in Mathematical Physics, 2008, 84 : 139 - 148
  • [6] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    [J]. PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [7] Non-abelian Reciprocity Laws on a Riemann Surface
    Horozov, I.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (11) : 2469 - 2495
  • [8] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    [J]. PHYSICAL REVIEW E, 2013, 87 (05):
  • [9] Twisted non-Abelian vortices
    Forgacs, Peter
    Lukacs, Arpad
    Schaposnik, Fidel A.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (28-29):
  • [10] Dyonic non-Abelian vortices
    Collie, Benjamin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (08)