On the Deformation Tensor Regularity for the Navier–Stokes Equations in Lorentz Spaces

被引:0
|
作者
Shiguo Huang
Xiang Ji
机构
[1] Guizhou University,School of Mathematics and Statistics
[2] Zhengzhou University of Light Industry,Department of Mathematics and Information Science
关键词
Navier–Stokes equations; Weak solutions; Regularity; 35Q30; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the regularity criteria in terms of the middle eigenvalue of the deformation (strain) tensor D(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}(u)$$\end{document} to the 3D Navier–Stokes equations in Lorentz spaces. It is shown that a Leray–Hopf weak solution is regular on (0, T] provided that the norm ‖λ2+‖Lp,∞(0,T;Lq,∞(R3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \lambda _{2}^{+}\Vert _{L^{p,\infty }(0,T; L ^{q,\infty }(\mathbb {R}^{3}))} $$\end{document} with 2/p+3/q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {2}/{p}+{3}/{q}=2$$\end{document}(3/2<q≤∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {3}/{2}<q\le \infty )$$\end{document} is small. This generalizes the corresponding works of Neustupa–Penel and Miller.
引用
收藏
页码:2371 / 2380
页数:9
相关论文
共 50 条