Offloading strategy with PSO for mobile edge computing based on cache mechanism

被引:0
|
作者
Wenqi Zhou
Lunyuan Chen
Shunpu Tang
Lijia Lai
Junjuan Xia
Fasheng Zhou
Liseng Fan
机构
[1] Guangzhou University,School of Computer Science
[2] Guangzhou University,School of Electronics and Communication Engineering
来源
Cluster Computing | 2022年 / 25卷
关键词
Edge computing; Offloading computation; Cache-enabled; Cache replacement;
D O I
暂无
中图分类号
学科分类号
摘要
With the development of Internet of Things (IoT) devices and the growth of users’ demand for computation and real-time services, artificial intelligence has been applied to reduce the system cost for future network systems. To meet the demand of network services, the paradigm of edge networks is increasingly shifting towards the joint design of computation, communication and caching services. This paper investigates a multi-user cache-enabled mobile edge computing (MEC) network and proposes an intelligent particle swarm optimization (PSO) based offloading strategy with cache mechanism. In each time slot, the server selects one file among multiple ones to pre-store, according to the proposed cache replacement strategy. In the next time slot, the requested files by the users needn’t to be computed and offloaded, if these files have been cached in the server. For the files that have not been cached in the server, PSO algorithm is adopted to find an appropriate offloading ratio to implement the partial offloading. Simulation results are finally presented to validate the proposed studies. In particular, we can find that incorporating the proposed cache replacement strategy into the computation offloading can effectively reduce the system latency and energy consumption for the future networks.
引用
收藏
页码:2389 / 2401
页数:12
相关论文
共 50 条
  • [1] Offloading strategy with PSO for mobile edge computing based on cache mechanism
    Zhou, Wenqi
    Chen, Lunyuan
    Tang, Shunpu
    Lai, Lijia
    Xia, Junjuan
    Zhou, Fasheng
    Fan, Liseng
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (04): : 2389 - 2401
  • [2] Intelligent Computation Offloading Mechanism with Content Cache in Mobile Edge Computing
    Li, Feixiang
    Fang, Chao
    Liu, Mingzhe
    Li, Ning
    Sun, Tian
    [J]. ELECTRONICS, 2023, 12 (05)
  • [3] Computation Offloading Strategy in Mobile Edge Computing
    Sheng, Jinfang
    Hu, Jie
    Teng, Xiaoyu
    Wang, Bin
    Pan, Xiaoxia
    [J]. INFORMATION, 2019, 10 (06)
  • [4] Collaborative Cache Allocation and Computation Offloading in Mobile Edge Computing
    Ndikumana, Anselme
    Ullah, Saeed
    Tuan LeAnh
    Tran, Nguyen H.
    Hong, Choong Seon
    [J]. 2017 19TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS 2017): MANAGING A WORLD OF THINGS, 2017, : 366 - 369
  • [5] Task Offloading Strategy Based on Mobile Edge Computing in UAV Network
    Qi, Wei
    Sun, Hao
    Yu, Lichen
    Xiao, Shuo
    Jiang, Haifeng
    [J]. ENTROPY, 2022, 24 (05)
  • [6] Offloading Schemes in Mobile Edge Computing With an Assisted Mechanism
    Wang, Haojia
    Peng, Zhangyou
    Pei, Yongsheng
    [J]. IEEE ACCESS, 2020, 8 : 50721 - 50732
  • [7] Offloading Strategy Based on Graph Neural Reinforcement Learning in Mobile Edge Computing
    Wang, Tao
    Xue, Ouyang
    Sun, Dingmi
    Chen, Yimin
    Li, Hao
    [J]. ELECTRONICS, 2024, 13 (12)
  • [8] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Li, Jie
    Yang, Zhiping
    Wang, Xingwei
    Xia, Yichao
    Ni, Shijian
    [J]. DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (02) : 492 - 504
  • [9] Collaborative Offloading Strategy for Dependent Tasks in Mobile Edge Computing
    Huo, Qingao
    Zhang, Wendong
    Wu, Ziwei
    Song, Guochang
    Wang, Bo
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2024, 134 (01) : 267 - 292
  • [10] Task-Offloading Strategy of Mobile Edge Computing for WBANs
    Li, Yuhong
    Zhang, Wenzhu
    [J]. ELECTRONICS, 2024, 13 (08)