Numerical Radius Inequalities for Nonlinear Operators in Hilbert Spaces

被引:0
|
作者
Xiaomei Dong
Deyu Wu
机构
[1] Inner Mongolia University,School of Mathematical Sciences
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Numerical radius inequalities; nonlinear operators; operator matrices; 47A12; 47A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the numerical radius of nonlinear operators in Hilbert spaces is studied. First, the relationship between the spectral radius and the numerical radius of nonlinear operators is given. Then, the famous inequality 12‖T‖≤w(T)≤‖T‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\Vert T\Vert \le w(T)\le \Vert T\Vert $$\end{document} and inclusion σ(A-1B)⊆W(B)¯W(A)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (A^{-1}B)\subseteq \frac{\overline{W(B)}}{\overline{W(A)}}$$\end{document} of bounded linear operators are generalized to the case of certain nonlinear operators, where w(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(\cdot )$$\end{document}, ‖·‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \cdot \Vert $$\end{document} and σ(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (\cdot )$$\end{document} are the numerical radius, the usual operator norm and the spectrum, respectively. Finally, some numerical radius inequalities for nonlinear operator matrices are obtained.
引用
收藏
相关论文
共 50 条