Quaternionic Fundamental Cardinal Splines: Interpolation and Sampling

被引:0
|
作者
Jeffrey A. Hogan
Peter R. Massopust
机构
[1] University of Newcastle,School of Mathematical and Physical Sciences, Mathematics Bldg V123
[2] Technical University of Munich,Centre of Mathematics, Research Unit M15
来源
关键词
Quaternions; Clifford analysis; Fundamental cardinal spline; Hilbert module; Sampling; Kramer’s lemma; 15A66; 30G35; 41A05; 42C40; 65D07; 94A20;
D O I
暂无
中图分类号
学科分类号
摘要
B-splines Bq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{q}$$\end{document} of quaternionic order q, for short quaternionic B-splines, are quaternion-valued piecewise Müntz polynomials whose scalar parts interpolate the classical Schoenberg splines Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}$$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document}, with respect to degree and smoothness. They in general do not satisfy the interpolation property Bq(n)=δn,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{q}(n) = \delta _{n,0}$$\end{document}, n∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {Z}$$\end{document}. However, the application of the interpolation filter (∑k∈ZBq^(ξ+2πk))-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sum \nolimits _{k\in \mathbb {Z}} \widehat{B_q}(\xi +2 \pi k))^{-1}$$\end{document}—if well-defined—in the frequency domain yields a cardinal fundamental spline of quaternionic order that satisfies the interpolation property. We handle the ambiguity of the quaternion-valued exponential function appearing in the denominator of the interpolation filter and relate the filter to interesting properties of a quaternionic Hurwitz zeta function and the existence of complex quaternionic inverses. Finally, we show that the cardinal fundamental splines of quaternionic order fit into the setting of Kramer’s Lemma and allow for a family of sampling, respectively, interpolation series.
引用
收藏
页码:3373 / 3403
页数:30
相关论文
共 50 条
  • [1] Quaternionic Fundamental Cardinal Splines: Interpolation and Sampling
    Hogan, Jeffrey A.
    Massopust, Peter R.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (07) : 3373 - 3403
  • [2] Interpolation by cardinal exponential splines
    Dept. of Math/Phys/CS, University of La Verne, La Verne, CA 91750, United States
    [J]. Journal of Information and Computational Science, 2007, 4 (01): : 179 - 194
  • [3] CARDINAL INTERPOLATION WITH POLYHARMONIC SPLINES
    MADYCH, WR
    [J]. MULTIVARIATE APPROXIMATION THEORY IV, 1989, 90 : 241 - 248
  • [4] CARDINAL INTERPOLATION BY MULTIVARIATE SPLINES
    CHUI, CK
    JETTER, K
    WARD, JD
    [J]. MATHEMATICS OF COMPUTATION, 1987, 48 (178) : 711 - 724
  • [5] On Weighted Average Interpolation with Cardinal Splines
    Lopez-Salazar, J.
    Perez-Villalon, G.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2017, 152 (01) : 73 - 82
  • [6] On Weighted Average Interpolation with Cardinal Splines
    J. López-Salazar
    G. Pérez-Villalón
    [J]. Acta Applicandae Mathematicae, 2017, 152 : 73 - 82
  • [7] ON UNIVARIATE CARDINAL INTERPOLATION BY SHIFTED SPLINES
    SIVAKUMAR, N
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (02) : 481 - 489
  • [8] CARDINAL HERMITE INTERPOLATION WITH BOX SPLINES
    RIEMENSCHNEIDER, S
    SCHERER, K
    [J]. CONSTRUCTIVE APPROXIMATION, 1987, 3 (02) : 223 - 238
  • [9] CARDINAL INTERPOLATION BY DM-SPLINES
    GOODMAN, TNT
    LEE, SL
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1983, 94 : 149 - 161
  • [10] CLASS OF CARDINAL SPLINES WITH HERMITE TYPE INTERPOLATION
    LEE, SL
    SHARMA, A
    TZIMBALARIO, J
    [J]. JOURNAL OF APPROXIMATION THEORY, 1976, 18 (01) : 30 - 38