Finiteness Theorems in Stochastic Integer Programming

被引:0
|
作者
Matthias Aschenbrenner
Raymond Hemmecke
机构
[1] Department of Mathematics,
[2] Statistics,undefined
[3] and Computer Science,undefined
[4] University of Illinois at Chicago,undefined
[5] 815 S. Morgan St. (M/C 249),undefined
[6] Institut fur Mathematische Optimierung,undefined
[7] Fakultat fur Mathematik,undefined
[8] Universitat Magdeburg,undefined
[9] Universitatsplatz 2,undefined
[10] 39106,undefined
关键词
Initial Segment; Polynomial Ring; Hilbert Function; Monomial Ideal; Finiteness Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We study Graver test sets for families of linear multistage stochastic integer programs with a varying number of scenarios. We show that these test sets can be decomposed into finitely many "building blocks," independent of the number of scenarios, and we give an effective procedure to compute them. The paper includes an introduction to Nash-Williams' theory of better-quasi-orderings, which is used to show termination of our algorithm. We also apply this theory to finiteness results for Hilbert functions.
引用
收藏
页码:183 / 227
页数:44
相关论文
共 50 条