Optimal mean-variance portfolio selection

被引:0
|
作者
Jesper Lund Pedersen
Goran Peskir
机构
[1] University of Copenhagen,Department of Mathematical Sciences
[2] The University of Manchester,School of Mathematics
来源
关键词
Nonlinear optimal control; Static optimality; Dynamic optimality; Mean-variance analysis; The Hamilton–Jacobi–Bellman equation; Martingale; Geometric Brownian motion; Markov process; Primary 60H30; 60J65; Secondary 49L20; 91G80; C61; G11;
D O I
暂无
中图分类号
学科分类号
摘要
Assuming that the wealth process Xu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^u$$\end{document} is generated self-financially from the given initial wealth by holding its fraction u in a risky stock (whose price follows a geometric Brownian motion with drift μ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in \mathbb {R}$$\end{document} and volatility σ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma >0$$\end{document}) and its remaining fraction 1-u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 -u$$\end{document} in a riskless bond (whose price compounds exponentially with interest rate r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in \mathbb {R}$$\end{document}), and letting Pt,x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{P}_{t,x}$$\end{document} denote a probability measure under which Xu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^u$$\end{document} takes value x at time t, we study the dynamic version of the nonlinear mean-variance optimal control problem [graphic not available: see fulltext]where t runs from 0 to the given terminal time T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}, the supremum is taken over admissible controls u, and c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c>0$$\end{document} is a given constant. By employing the method of Lagrange multipliers we show that the nonlinear problem can be reduced to a family of linear problems. Solving the latter using a classic Hamilton-Jacobi-Bellman approach we find that the optimal dynamic control is given by u∗(t,x)=δ2cσ1xe(δ2-r)(T-t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_*(t,x) = \frac{\delta }{2\; c\; \sigma }\; \frac{1}{x}\, e^{(\delta ^2-r)(T-t)} \end{aligned}$$\end{document}where δ=(μ-r)/σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta = (\mu -r)/\sigma $$\end{document}. The dynamic formulation of the problem and the method of solution are applied to the constrained problems of maximising/minimising the mean/variance subject to the upper/lower bound on the variance/mean from which the nonlinear problem above is obtained by optimising the Lagrangian itself.
引用
收藏
页码:137 / 160
页数:23
相关论文
共 50 条
  • [1] Optimal mean-variance portfolio selection
    Pedersen, Jesper Lund
    Peskir, Goran
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2017, 11 (02) : 137 - 160
  • [2] On the Tail Mean-Variance optimal portfolio selection
    Landsman, Zinoviy
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (03): : 547 - 553
  • [3] ON MEAN-VARIANCE PORTFOLIO SELECTION
    SCHNABEL, JA
    [J]. MANAGERIAL AND DECISION ECONOMICS, 1984, 5 (01) : 3 - 6
  • [4] Optimal dynamic portfolio selection: Multiperiod mean-variance formulation
    Li, D
    Ng, WL
    [J]. MATHEMATICAL FINANCE, 2000, 10 (03) : 387 - 406
  • [5] Mean-variance portfolio selection via LQ optimal control
    Lim, AEB
    Zhou, XY
    [J]. PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4553 - 4558
  • [6] Behavioral mean-variance portfolio selection
    Bi, Junna
    Jin, Hanging
    Meng, Qingbin
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 271 (02) : 644 - 663
  • [7] OPTIMAL STRATEGIES OF BENCHMARK AND MEAN-VARIANCE PORTFOLIO SELECTION PROBLEMS FOR INSURERS
    Zeng, Yan
    Li, Zhongfei
    Liu, Jingjun
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2010, 6 (03) : 483 - 496
  • [8] Optimal Portfolio Selection of Mean-Variance Utility with Stochastic Interest Rate
    Li, Shuang
    Liu, Shican
    Zhou, Yanli
    Wu, Yonghong
    Ge, Xiangyu
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [9] OPTIMAL MEAN-VARIANCE PORTFOLIO SELECTION WITH NO-SHORT-SELLING CONSTRAINT
    Xu, Jingsi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2020, 23 (08)
  • [10] Mean-Variance Model for International Portfolio Selection
    Pan, Qiming
    Huang, Xiaoxia
    [J]. EUC 2008: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING, VOL 2, WORKSHOPS, 2008, : 632 - 636