Approximation for maximizing monotone non-decreasing set functions with a greedy method

被引:0
|
作者
Zengfu Wang
Bill Moran
Xuezhi Wang
Quan Pan
机构
[1] Northwestern Polytechnical University,School of Automation
[2] The University of Melbourne,Department of Electrical and Electronic Engineering
[3] The University of Melbourne,Department of Electrical and Electronic Engineering
来源
关键词
Monotone submodular set function; Matroid; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of maximizing a monotone non-decreasing function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} subject to a matroid constraint. Fisher, Nemhauser and Wolsey have shown that, if f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is submodular, the greedy algorithm will find a solution with value at least 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document} of the optimal value under a general matroid constraint and at least 1-1e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\frac{1}{e}$$\end{document} of the optimal value under a uniform matroid (M=(X,I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {M} = (X,\mathcal {I})$$\end{document}, I={S⊆X:|S|≤k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I} = \{ S \subseteq X: |S| \le k\}$$\end{document}) constraint. In this paper, we show that the greedy algorithm can find a solution with value at least 11+μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{1+\mu }$$\end{document} of the optimum value for a general monotone non-decreasing function with a general matroid constraint, where μ=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = \alpha $$\end{document}, if 0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \alpha \le 1$$\end{document}; μ=αK(1-αK)K(1-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = \frac{\alpha ^K(1-\alpha ^K)}{K(1-\alpha )}$$\end{document} if α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 1$$\end{document}; here α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a constant representing the “elemental curvature” of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}, and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is the cardinality of the largest maximal independent sets. We also show that the greedy algorithm can achieve a 1-(α+⋯+αk-11+α+⋯+αk-1)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 - (\frac{\alpha + \cdots + \alpha ^{k-1}}{1+\alpha + \cdots + \alpha ^{k-1}})^k$$\end{document} approximation under a uniform matroid constraint. Under this unified α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-classification, submodular functions arise as the special case 0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \alpha \le 1$$\end{document}.
引用
收藏
页码:29 / 43
页数:14
相关论文
共 50 条
  • [1] Approximation for maximizing monotone non-decreasing set functions with a greedy method
    Wang, Zengfu
    Moran, Bill
    Wang, Xuezhi
    Pan, Quan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 29 - 43
  • [2] An approximation theorem for non-decreasing functions on compact posets
    Besnard, Fabien
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 172 : 1 - 3
  • [3] INTERVAL FUNCTIONS AND NON-DECREASING FUNCTIONS
    APPLING, WDL
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (04): : 752 - &
  • [4] Visualizing Temporal Data using Time-dependent Non-decreasing Monotone Functions
    Ferreira, Maria D'Amaral
    Pires, Joao Moura
    Damasio, Carlos Viegas
    [J]. 2022 26TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2022, : 33 - 39
  • [5] Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions
    Wang, Shuang
    Ansari, Arslan Hojat
    Chandok, Sumit
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015, : 1 - 16
  • [6] Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions
    Shuang Wang
    Arslan Hojat Ansari
    Sumit Chandok
    [J]. Fixed Point Theory and Applications, 2015
  • [7] A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions
    Nong, Qingqin
    Gong, Suning
    Fang, Qizhi
    Du, Dingzhu
    [J]. COMPLEXITY AND APPROXIMATION: IN MEMORY OF KER-I KO, 2020, 12000 : 172 - 186
  • [8] SOME REMARKS ON FUNCTIONS WITH NON-DECREASING INCREMENTS
    Khan, Asif Raza
    Mehmood, Faraz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (01): : 1 - 16
  • [9] ADDITIVE FUNCTIONS WITH A NON-DECREASING NORMAL ORDER
    NARKIEWICZ, W
    [J]. COLLOQUIUM MATHEMATICUM, 1974, 32 (01) : 137 - 142
  • [10] A STRICT BEST APPROXIMANT BY NON-DECREASING FUNCTIONS
    LEGG, DA
    TOWNSEND, DW
    HUOTARI, R
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (5-6) : 737 - 741