Non-fragile observer design for fractional-order one-sided Lipschitz nonlinear systems

被引:32
|
作者
Lan Y.-H. [1 ,2 ]
Li W.-J. [1 ]
Zhou Y. [1 ]
Luo Y.-P. [3 ]
机构
[1] School of Information Engineering, Xiangtan University, Xiangtan
[2] Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan
[3] Institute of Intelligent Control, Hunan Institute of Engineering, Xiangtan
基金
中国国家自然科学基金;
关键词
Fractional-order; indirect Lyapunov approach; linear matrix inequality (LMI); nonlinear system; observer design;
D O I
10.1007/s11633-013-0724-y
中图分类号
学科分类号
摘要
This paper is concerned with the problem of the full-order observer design for a class of fractional-order Lipschitz nonlinear systems. By introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach, the sufficient condition for asymptotic stability of the full-order observer error dynamic system is presented. The stability condition is obtained in terms of LMI, which is less conservative than the existing one. A numerical example demonstrates the validity of this approach. © 2013 Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:296 / 302
页数:6
相关论文
共 50 条
  • [1] Non-fragile Observer Design for Fractional-order One-sided Lipschitz Nonlinear Systems
    Yong-Hong Lan
    Wen-Jie Li
    Yan Zhou
    Yi-Ping Luo
    [J]. Machine Intelligence Research, 2013, 10 (04) : 296 - 302
  • [2] Unknown input observer design for fractional-order one-sided Lipschitz systems
    Jmal, A.
    Naifar, O.
    Derbel, N.
    [J]. 2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 65 - 69
  • [3] A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems
    Kahouli, Omar
    Naifar, Omar
    Ben Makhlouf, Abdellatif
    Bouteraa, Yassine
    Aloui, Ali
    Rebhi, Ali
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [4] An iterative method to design optimal non-fragile H∞ observer for Lipschitz nonlinear fractional-order systems
    Boroujeni, Elham Amini
    Momeni, Hamid Reza
    [J]. NONLINEAR DYNAMICS, 2015, 80 (04) : 1801 - 1810
  • [5] Non-fragile H∞ observer for Lipschitz conformable fractional-order systems
    Naifar, Omar
    Jmal, Assaad
    Ben Makhlouf, Abdellatif
    [J]. ASIAN JOURNAL OF CONTROL, 2022, 24 (05) : 2202 - 2212
  • [6] Observer Design for Fractional Order One-Sided Lipschitz Nonlinear Systems with Unknown Input
    Zhan, Tao
    Ma, Shuping
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 1883 - 1888
  • [7] Reduced order observer design for one-sided lipschitz nonlinear systems
    Kunsan National University, Korea, Republic of
    [J]. J. Inst. Control Rob. Syst., 2013, 4 (281-284):
  • [8] Nonlinear Observer Design for One-Sided Lipschitz Systems
    Abbaszadeh, Masoud
    Marquez, Horacio J.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 5284 - 5289
  • [9] Non-fragile observer-based quantized control for a class of one-sided Lipschitz systems
    El Haiek, Badreddine
    Zoulagh, Taha
    Barbosa, Karina A.
    El Hajjaji, Ahmed
    [J]. IFAC PAPERSONLINE, 2022, 55 (34): : 138 - 143
  • [10] Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems
    Boroujeni, Elham Amini
    Momeni, Hamid Reza
    [J]. SIGNAL PROCESSING, 2012, 92 (10) : 2365 - 2370