Bochner–Riesz Means of Morrey Functions

被引:1
|
作者
David R. Adams
Jie Xiao
机构
[1] University of Kentucky,Department of Mathematics
[2] Memorial University,Department of Mathematics and Statistics
关键词
Bochner–Riesz means; Fourier transforms; Morrey functions; 42B15; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns both norm estimation and pointwise approximation for the Bochner–Riesz means of an arbitrary Morrey function on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{\mathbb {R}}}}^n}$$\end{document}—Theorems 1.1 and 1.2 for Lp,λ(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p,\lambda }({{{{\mathbb {R}}}}^n})$$\end{document}—thereby generalizing the corresponding results for Lp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({{{{\mathbb {R}}}}^n})$$\end{document} in Stein (Acta Math 100:93–147, 1958) and Carbery et al. (J Lond Math Soc 38:513–524, 1988). As a side note, this paper also establishes Lemma 4.1 of Tomas–Stein type—if f∈Lp,λ(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L^{p,\lambda }({{{{\mathbb {R}}}}^n})$$\end{document} under 2-1(n+1)<λ≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2^{-1}(n+1)<\lambda \le n$$\end{document} is compactly supported, then ‖f^‖L2(Sn-1)≲‖f‖Lp,λ(Rn)for4λn+1+2λ≤p<2λn+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert {\hat{f}}\Vert _{L^2({\mathbb {S}}^{n-1})}\lesssim \Vert f\Vert _{L^{p,\lambda }({{{{\mathbb {R}}}}^n})}\ \ \hbox {for}\ \ \frac{4\lambda }{n+1+2\lambda }\le p<\frac{2\lambda }{n+1}. \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Bochner-Riesz Means of Morrey Functions
    Adams, David R.
    Xiao, Jie
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
  • [2] NORM CONVERGENCE OF RIESZ-BOCHNER MEANS FOR RADIAL FUNCTIONS
    WELLAND, GV
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (01): : 176 - 185
  • [3] BOCHNER-RIESZ MEANS OF FUNCTIONS IN WEAK-L(P)
    COLZANI, L
    TRAVAGLINI, G
    VIGNATI, M
    [J]. MONATSHEFTE FUR MATHEMATIK, 1993, 115 (1-2): : 35 - 45
  • [4] Quasiradial Bochner-Riesz means for some nonsmooth distance functions
    Kim, YC
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1997, 46 (04) : 1155 - 1180
  • [5] Maximal operators of commutators of Bochner-Riesz means with Lipschitz functions
    Gong, Shuli
    Ma, Bolin
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (03) : 427 - 447
  • [6] Maximal operators of commutators of Bochner-Riesz means with Lipschitz functions
    Shuli Gong
    Bolin Ma
    [J]. Frontiers of Mathematics in China, 2011, 6 : 427 - 447
  • [7] On Fejer and Bochner-Riesz Means
    Z. Ditzian
    [J]. Journal of Fourier Analysis and Applications, 2005, 11 : 489 - 496
  • [8] Spectra of Bochner-Riesz Means on Lp
    Chen, Yang
    Fang, Qiquan
    Sun, Qiyu
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (10) : 1203 - 1212
  • [9] On the Bochner-Riesz means of critical order
    Liflyand, ER
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) : 1443 - 1450
  • [10] Bochner–Riesz Means with Respect to a Generalized Cylinder
    Yaryong Heo
    Youngwoo Koh
    Chan Woo Yang
    [J]. Integral Equations and Operator Theory, 2014, 79 : 1 - 21