Singular subelliptic equations and Sobolev inequalities on Carnot groups

被引:0
|
作者
Prashanta Garain
Alexander Ukhlov
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics
来源
关键词
Subelliptic operators; Carnot groups; Singular problem; Sobolev inequality; 35H20; 22E30; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study singular subelliptic p-Laplace equations and best constants in Sobolev inequalities on Carnot groups. We prove solvability of these subelliptic p-Laplace equations and existence of the minimizer of the corresponding variational problem. It leads to existence of the best constant in the corresponding (q, p)-Sobolev inequality, 0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1$$\end{document}, 1<p<ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\nu $$\end{document}.
引用
收藏
相关论文
共 50 条