Multi-player Last Nim with Passes

被引:0
|
作者
Wen An Liu
Juan Yang
机构
[1] Henan Normal University,College of Mathematics and Information Science
来源
关键词
Impartial combinatorial game; Multi-player; Last Nim; Alliance; Pass;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a class of impartial combinatorial games, Multi-player Last Nim with Passes, denoted by MLNim(s)(N,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(s)}(N,n)$$\end{document}: there are N piles of counters which are linearly ordered. In turn, each of n players either removes any positive integer of counters from the last pile, or makes a choice ‘pass’. Once a ‘pass’ option is used, the total number s of passes decreases by 1. When all s passes are used, no player may ever ‘pass’ again. A pass option can be used at any time, up to the penultimate move, but cannot be used at the end of the game. The player who cannot make a move wins the game. The aim is to determine the game values of the positions of MLNim(s)(N,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{(s)}(N,n)$$\end{document} for all integers N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document} and n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document}. For n>N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>N+1$$\end{document} or n=N+1≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=N+1\ge 3$$\end{document}, the game values are completely determined for any s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document}. For 3≤n≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le n\le N$$\end{document}, the game values are determined for infinitely many triplets (N, n, s). We also present a possible explanation why determining the game values becomes more complicated if n≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le N$$\end{document}.
引用
收藏
页码:673 / 693
页数:20
相关论文
共 50 条
  • [1] Multi-player Last Nim with Passes
    Liu, Wen An
    Yang, Juan
    INTERNATIONAL JOURNAL OF GAME THEORY, 2018, 47 (02) : 673 - 693
  • [2] Multi-player Small Nim with Passes
    Liu, Wen An
    Zhou, Jing Jing
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 306 - 314
  • [3] Misere Nim with multi-player
    Liu, Wen An
    Duan, Jia Wei
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 40 - 50
  • [4] Multi-player End-Nim games
    Liu, Wen An
    Wu, Tao
    THEORETICAL COMPUTER SCIENCE, 2019, 761 : 7 - 22
  • [5] Multi-player race
    Dogan, Serhat
    Karagozoglu, Emin
    Keskin, Kerim
    Saglam, Cagri
    JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2018, 149 : 123 - 136
  • [6] Multi-player Go
    Cazenave, Tristan
    COMPUTERS AND GAMES, 2008, 5131 : 50 - 59
  • [7] Multi-player matrix games
    Broom, M
    Cannings, C
    Vickers, GT
    BULLETIN OF MATHEMATICAL BIOLOGY, 1997, 59 (05) : 931 - 952
  • [8] Multi-Player Flow Games
    Guha, Shibashis
    Kupferman, Orna
    Vardi, Gal
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 104 - 112
  • [9] Random multi-player games
    Kontorovsky, Natalia L.
    Pablo Pinasco, Juan
    Vazquez, Federico
    CHAOS, 2022, 32 (03)
  • [10] A Survey on Multi-player Bandits
    Boursier, Etienne
    Perchet, Vianney
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 45