We construct a ring of meromorphic Siegel modular forms of degree 2 and level 5, with singularities supported on an arrangement of Humbert surfaces, which is generated by four singular theta lifts of weights 1, 1, 2, 2 and their Jacobian. We use this to prove that the ring of holomorphic Siegel modular forms of degree 2 and level Γ0(5)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma _0(5)$$\end{document} is minimally generated by eighteen modular forms of weights 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 10, 11, 11, 11, 13, 13, 13, 15.