Conformal dimension of hyperbolic groups that split over elementary subgroups

被引:0
|
作者
Matias Carrasco
John M. Mackay
机构
[1] Universidad de la República,Instituto de Matemática y Estadística Rafael Laguardia
[2] University of Bristol,School of Mathematics
来源
Inventiones mathematicae | 2022年 / 227卷
关键词
Conformal dimension; Hyperbolic groups; Graph of groups decomposition; 20F67; 30L10; 51F99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the (Ahlfors regular) conformal dimension of the boundary at infinity of Gromov hyperbolic groups which split over elementary subgroups. If such a group is not virtually free, we show that the conformal dimension is equal to the maximal value of the conformal dimension of the vertex groups, or 1, whichever is greater, and we characterise when the conformal dimension is attained. As a consequence, we are able to characterise which Gromov hyperbolic groups (without 2-torsion) have conformal dimension 1, answering a question of Bonk and Kleiner.
引用
收藏
页码:795 / 854
页数:59
相关论文
共 50 条