Method of canonical elements for modeling transfer processes in multiply connected regions of an arbitrary shape

被引:0
|
作者
N. I. Nikitenko
Yu. N. Kol’chik
机构
关键词
Nodal Point; Hollow Cylinder; Connected Region; Coordinate Surface; Mesh Width;
D O I
10.1007/BF02699398
中图分类号
学科分类号
摘要
A refined method of canonical elements for calculation of processes of heat and mass transfer and deformation in multiply connected bodies of a complex shape with curvilinear boundaries is stated. Results of comparison of the data of numerical experiments with accurate analytical solutions are presented.
引用
收藏
页码:808 / 814
页数:6
相关论文
共 50 条
  • [21] Annulus with Circular Slit Map of Bounded Multiply Connected Regions via Integral Equation Method
    Sangawi, Ali W. K.
    Murid, Ali H. M.
    Nasser, M. M. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (04) : 945 - 959
  • [22] Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe's canonical slit domains
    Nasser, Mohamed M. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 47 - 56
  • [23] What makes physical shape modeling different? A method to analyse shape modeling processes
    Wiegers, T
    Dumitrescu, R
    Vergeest, JSM
    APPLICATIONS OF DIGITAL TECHNIQUES IN INDUSTRIAL DESIGN ENGINEERING-CAID&CD' 2005, 2005, : 118 - 123
  • [24] Modeling connected regions in arbitrary planar point clouds by robust B-spline approximation
    Moerwald, Thomas
    Balzer, Jonathan
    Vincze, Markus
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 76 : 141 - 151
  • [25] Spatial random tree grammars for modeling hierarchical structure in images with regions of arbitrary shape
    Siskind, Jeffrey M.
    Sherman, James J., Jr.
    Pollak, Ilya
    Harper, Mary P.
    Bouman, Charles A.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (09) : 1504 - 1519
  • [26] Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions
    Ali W. K. Sangawi
    Ali H. M. Murid
    Lee Khiy Wei
    Journal of Scientific Computing, 2016, 68 : 1124 - 1141
  • [27] Subproblem approach for modeling multiply connected thin regions with an h-conformal magnetodynamic finite element formulation
    Vuong Quoc Dang
    Dular, Patrick
    Sabariego, Ruth V.
    Kraehenbuehl, Laurent
    Geuzaine, Christophe
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2013, 64 (02):
  • [28] Erratum to: Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions
    Ali W. K. Sangawi
    Ali H. M. Murid
    Lee Khiy Wei
    Journal of Scientific Computing, 2016, 68 : 1142 - 1143
  • [29] APPLICATION OF "MICRO-PROCESSES" METHOD FOR MODELING HEAT CONDUCTION AND DIFFUSION PROCESSES IN CANONICAL BODIES
    Fedosov, S., V
    Bakanov, M. O.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2020, 63 (10): : 90 - 95