Residual bounds of approximate solutions of the discrete-time algebraic Riccati equation

被引:0
|
作者
Ji-guang Sun
机构
[1] Department of Computing Science,
[2] Umeå University,undefined
[3] S-901 87 Umeå,undefined
[4] Sweden ,undefined
来源
Numerische Mathematik | 1998年 / 78卷
关键词
Mathematics Subject Classification (1991):15A24, 65H05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde{X}$\end{document} be a Hermitian matrix which approximates the unique Hermitian positive semi-definite solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X$\end{document} to the discrete-time algebraic Riccati equation (DARE) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ X-F^{\rm H}XF+F^{\rm H}XG_1(G_2+G_1^{\rm H}XG_1)^{-1}G_1^{\rm H}XF+C^{\rm H}C=0, \] \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $F \in{\cal C}^{n \times n}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $C_2 \in{\cal C}^{m \times m}$\end{document} is Hermitian positive definite, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G_1 \in{\cal C}^{n \times m}, C \in{\cal C}^{r \times n}$\end{document}, the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(F,G_1)$\end{document} is stabilizable, and the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(C,F)$\end{document} is detectable. Assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I+G\tilde{X}$\end{document} is nonsingular, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(I+G\tilde{X})^{-1}F$\end{document} is stable. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G=G_1G_2^{-1}G_1^{\rm H}, H=C^{\rm H}C$\end{document}, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \hat{R}=\tilde{X}-F^{\rm H}\tilde{X}(I+G\tilde{X})^{-1}F-H \] \end{document} be the residual of the DARE with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tilde{X}$\end{document}. Define the linear operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\vec L$\end{document} by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ {\vec L}W=W-F^{\rm H}(I+\tilde{X}G)^{-1}W(I+G\tilde{X})^{-1}F,\;\;\;\;\; W=W^{\rm H} \in{\cal C}^{n \times n}. \] \end{document} The main result of this paper is: If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \epsilon \equiv \|{\vec L}^{-1}\hat{R}\| \leq \frac{l}{\gamma(2\phi^2+2\phi\sqrt{\phi^2+l}+l)}, \] \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\|\;\|$\end{document} denotes any unitarily invariant norm, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ l=\|{\vec L}^{-1}\|^{-1},\;\;\;\; \phi=\|(I+G\tilde{X})^{-1}F\|_2,\;\;\;\; \gamma=\|(I+G\tilde{X})^{-1}G\|_2, \] \end{document} then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \|\tilde{X}-X\| \leq \frac{2l\epsilon}{(1+\gamma\epsilon)l +\sqrt{(1+\gamma\epsilon)^2l^2-4(\phi^2+l)\gamma l\epsilon}} \leq \frac{2\|{\vec L}^{-1}\hat{R}\|} {1+\gamma\|{\vec L}^{-1}\hat{R}\|}. \] \end{document}
引用
收藏
页码:463 / 478
页数:15
相关论文
共 50 条