Quantum approximate optimization algorithm for Bayesian network structure learning

被引:0
|
作者
Vicente P. Soloviev
Concha Bielza
Pedro Larrañaga
机构
[1] Universidad Politécnica de Madrid,Computational Intelligence Group
关键词
Quantum approximate optimization algorithm; Variational quantum algorithm; Quantum optimization; Bayesian network structure learning;
D O I
暂无
中图分类号
学科分类号
摘要
Bayesian network structure learning is an NP-hard problem that has been faced by a number of traditional approaches in recent decades. Currently, quantum technologies offer a wide range of advantages that can be exploited to solve optimization tasks that cannot be addressed in an efficient way when utilizing classic computing approaches. In this work, a specific type of variational quantum algorithm, the quantum approximate optimization algorithm, was used to solve the Bayesian network structure learning problem, by employing 3n(n-1)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3n(n-1)/2$$\end{document} qubits, where n is the number of nodes in the Bayesian network to be learned. Our results showed that the quantum approximate optimization algorithm approach offers competitive results with state-of-the-art methods and quantitative resilience to quantum noise. The approach was applied to a cancer benchmark problem, and the results justified the use of variational quantum algorithms for solving the Bayesian network structure learning problem.
引用
收藏
相关论文
共 50 条
  • [1] Quantum approximate optimization algorithm for Bayesian network structure learning
    Soloviev, Vicente P.
    Bielza, Concha
    Larranaga, Pedro
    QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [2] TOPOLOGY OPTIMIZATION WITH QUANTUM APPROXIMATE BAYESIAN OPTIMIZATION ALGORITHM
    Kim, Jungin E.
    Wang, Yan
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3B, 2023,
  • [3] Hybrid Optimization Algorithm for Bayesian Network Structure Learning
    Sun, Xingping
    Chen, Chang
    Wang, Lu
    Kang, Hongwei
    Shen, Yong
    Chen, Qingyi
    INFORMATION, 2019, 10 (10)
  • [4] FALCON OPTIMIZATION ALGORITHM FOR BAYESIAN NETWORK STRUCTURE LEARNING
    Kareem, Shahab Wahhab
    Okur, Mehmet Cudi
    COMPUTER SCIENCE-AGH, 2021, 22 (04): : 553 - 569
  • [5] A Hybrid Optimization Algorithm for Bayesian Network Structure Learning Based on Database
    Li, Junyi
    Chen, Jingyu
    JOURNAL OF COMPUTERS, 2014, 9 (12) : 2787 - 2791
  • [6] Bayesian Network Structure Learning Algorithm Combining Improved Dragonfly Optimization
    Ji, Dongmei
    Sun, Zheng
    IEEE ACCESS, 2023, 11 : 92887 - 92897
  • [7] Bayesian network structure learning algorithm using particle swarm optimization
    Liang, Jie
    Cai, Qi
    Chu, Zhuli
    Wang, Haiping
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40 (12): : 44 - 48
  • [8] A Bayesian Network Structure Hybrid Learning Algorithm Based on Improved Butterfly Optimization Algorithm
    Mao, Ying
    Gao, Jingpeng
    Sun, Qian
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [9] Bayesian network structure learning based on the chaotic particle swarm optimization algorithm
    Zhang, Q.
    Li, Z.
    Zhou, C. J.
    Wei, X. P.
    GENETICS AND MOLECULAR RESEARCH, 2013, 12 (04): : 4468 - 4479
  • [10] Learning Bayesian network structure with immune algorithm
    Cai, Zhiqiang
    Si, Shubin
    Sun, Shudong
    Dui, Hongyan
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2015, 26 (02) : 282 - 291