Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras

被引:0
|
作者
A. M. Bikchentaev
机构
[1] Kazan (Volga region) Federal University,N. I. Lobachevskii Institute of Mathematics and Mechanics
来源
关键词
Hilbert space; linear operator; isometry; unitary operator; idempotent; tripotent; projection; compact operator; von Neumann algebra; trace; rearrangement;
D O I
暂无
中图分类号
学科分类号
摘要
Let τ be a faithful normal semifinite trace on a von Neumann algebra ℳ, and ℳu be a unitary part of ℳ. We prove a new property of rearrangements of some tripotents in ℳ. If V ∈ ℳ is an isometry (or a coisometry) and U − V is τ-compact for some U ∈ ℳu then V ∈ ℳu. Let ℳ be a factor with a faithful normal trace τ on it. If V ∈ ℳ is an isometry (or a coisometry) and U − V is compact relative to ℳ for some U ∈ ℳu then V ∈ ℳu. We also obtain some corollaries.
引用
收藏
页码:1450 / 1454
页数:4
相关论文
共 50 条