Future forecasting prediction of Covid-19 using hybrid deep learning algorithm

被引:0
|
作者
Ganesh Yenurkar
Sandip Mal
机构
[1] VIT Bhopal University,School of Computing Science & Engineering
[2] Yeshwantrao Chavan College of Engineering,undefined
来源
关键词
Corona disease; Hybrid deep learning model; ResNet; GoogleNet; Feature extraction; Feature selection; As well as mayfly optimization (MO) algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Due the quick spread of coronavirus disease 2019 (COVID-19), identification of that disease, prediction of mortality rate and recovery rate are considered as one of the critical challenges in the whole world. The occurrence of COVID-19 dissemination beyond the world is analyzed in this research and an artificial-intelligence (AI) based deep learning algorithm is suggested to detect positive cases of COVID19 patients, mortality rate and recovery rate using real-world datasets. Initially, the unwanted data like prepositions, links, hashtags etc., are removed using some pre-processing techniques. After that, term frequency inverse-term frequency (TF-IDF) andBag of Words (BoW) techniques are utilized to extract the features from pre-processed dataset. Then, Mayfly Optimization (MO) algorithm is performed to pick the relevant features from the set of features. Finally, two deep learning procedures, ResNet model and GoogleNet model, are hybridized to achieve the prediction process. Our system examines two different kinds of publicly available text datasets to identify COVID-19 disease as well as to predict mortality rate and recovery rate using those datasets. There are four different datasets are taken to analyse the performance, in which the proposed method achieves 97.56% accuracy which is 1.40% greater than Linear Regression (LR) and Multinomial Naive Bayesian (MNB), 3.39% higher than Random Forest (RF) and Stochastic gradient boosting (SGB) as well as 5.32% higher than Decision tree (DT) and Bagging techniques if first dataset. When compared to existing machine learning models, the simulation result indicates that a proposed hybrid deep learning method is valuable in corona virus identification and future mortality forecast study.
引用
收藏
页码:22497 / 22523
页数:26
相关论文
共 50 条
  • [1] Future forecasting prediction of Covid-19 using hybrid deep learning algorithm
    Yenurkar, Ganesh
    Mal, Sandip
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (15) : 22497 - 22523
  • [2] Deep Learning Hybrid Models for COVID-19 Prediction
    Yu, Ziyue
    He, Lihua
    Luo, Wuman
    Tse, Rita
    Pau, Giovanni
    JOURNAL OF GLOBAL INFORMATION MANAGEMENT, 2022, 30 (10)
  • [3] COVID-19 in Iran: Forecasting Pandemic Using Deep Learning
    Kafieh, Rahele
    Arian, Roya
    Saeedizadeh, Narges
    Amini, Zahra
    Serej, Nasim Dadashi
    Minaee, Shervin
    Yadav, Sunil Kumar
    Vaezi, Atefeh
    Rezaei, Nima
    Javanmard, Shaghayegh Haghjooy
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [4] COVID-19 Future Forecasting Using Supervised Machine Learning Models
    Rustam, Furqan
    Reshi, Aijaz Ahmad
    Mehmood, Arif
    Ullah, Saleem
    On, Byung-Won
    Aslam, Waqar
    Choi, Gyu Sang
    IEEE ACCESS, 2020, 8 (08): : 101489 - 101499
  • [5] Forecasting COVID-19 new cases using deep learning methods
    Xu, Lu
    Magar, Rishikesh
    Farimani, Amir Barati
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [6] Epidemiological forecasting of COVID-19 infection using deep learning approach
    Blagojevic, Andela
    Sustersic, Tijana
    Filipovic, Nenad
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [7] COVID-19 Pandemic Prediction and Forecasting Using Machine Learning Classifiers
    Sultana, Jabeen
    Singha, Anjani Kumar
    Siddiqui, Shams Tabrez
    Nagalaxmi, Guthikonda
    Sriram, Anil Kumar
    Pathak, Nitish
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02): : 1007 - 1024
  • [8] Prediction and analysis of Covid-19 using the Deep Learning Models
    Indira V.
    Geetha R.
    Umarani S.
    Priyadarshini D.A.
    Research on Biomedical Engineering, 2024, 40 (01) : 183 - 197
  • [9] Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach
    Prasanth, Sikakollu
    Singh, Uttam
    Kumar, Arun
    Tikkiwal, Vinay Anand
    Chong, Peter H. J.
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [10] Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach
    Prasanth, Sikakollu
    Singh, Uttam
    Kumar, Arun
    Tikkiwal, Vinay Anand
    Chong, Peter H.J.
    Chaos, Solitons and Fractals, 2021, 142