Semiclassical Ground State Solutions for a Class of Kirchhoff-Type Problem with Convolution Nonlinearity

被引:0
|
作者
Die Hu
Xianhua Tang
Ning Zhang
机构
[1] Central South University,School of Mathematics and Statistics, HNP
来源
关键词
Kirchhoff-type problem; Convolution nonlinearity; Semiclassical ground state solution; Asymptotic behavior; 35B40; 35J20; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the following Kirchhoff-type problem with convolution nonlinearity -ε2+bε∫R3|∇v|2dx▵v+V(x)v=ε-α(Iα∗F(v))f(v),x∈R3,v∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}&-\left( \varepsilon ^{2}+ b\varepsilon \int _{ {\mathbb {R}}^{3}}|\nabla v|^{2} dx \right) \triangle v+ V(x)v=\varepsilon ^{-\alpha }(I_{\alpha }*F(v))f( v),&x\in {\mathbb {R}}^{3},\\&v\in H^{1}({\mathbb {R}}^{3}), \end{aligned} \right. \end{aligned}$$\end{document}where b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document}, Iα:R3→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\alpha }:{\mathbb {R}}^{3}\rightarrow {\mathbb {R}}$$\end{document}, with α∈(0,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,3)$$\end{document}, is the Riesz potential, V is differentiable, f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {\mathbb {C}}({\mathbb {R}},{\mathbb {R}})$$\end{document} and F(t)=∫0tf(s)ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(t)=\int ^{t}_{0}f(s)ds$$\end{document}. By using variational and some analytical techniques, we establish the existence and concentration of the semiclassical ground state solutions for the above equation. It is worth mentioning that our results generalize and improve some ones in Gu and Tang (Adv Nonlinear Stud 19:779–795, 2019), Lü (Monatsh Math 182:335–358, 2017) and some other related literatures.
引用
收藏
相关论文
共 50 条
  • [1] Semiclassical Ground State Solutions for a Class of Kirchhoff-Type Problem with Convolution Nonlinearity
    Hu, Die
    Tang, Xianhua
    Zhang, Ning
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (11)
  • [2] Ground state solution for a class of Kirchhoff-type equation with general convolution nonlinearity
    Zhou, Li
    Zhu, Chuanxi
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [3] Ground state solution for a class of Kirchhoff-type equation with general convolution nonlinearity
    Li Zhou
    Chuanxi Zhu
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [4] Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki–Lions type conditions
    Die Hu
    Xianhua Tang
    Shuai Yuan
    Qi Zhang
    [J]. Analysis and Mathematical Physics, 2022, 12
  • [5] Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki-Lions type conditions
    Hu, Die
    Tang, Xianhua
    Yuan, Shuai
    Zhang, Qi
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [6] Ground state solutions of Pohozaev type for Kirchhoff-type problems with general convolution nonlinearity and variable potential
    Zhang, Qiongfen
    Xie, Hai
    Jiang, Yi-rong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (11) : 11757 - 11779
  • [7] Ground State Solutions for Kirchhoff-type Problems with Critical Nonlinearity
    Ye, Yiwei
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (01): : 63 - 79
  • [8] GROUND-STATE SOLUTIONS TO A KIRCHHOFF-TYPE TRANSMISSION PROBLEM
    Li, Fuyi
    Zhang, Ying
    Zhu, Xiaoli
    Liang, Zhanping
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (01) : 201 - 219
  • [9] Semiclassical ground states for a class of nonlinear Kirchhoff-type problems
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    [J]. APPLICABLE ANALYSIS, 2017, 96 (13) : 2267 - 2284
  • [10] Ground state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth
    Xu, Li-Ping
    Chen, Haibo
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (04) : 535 - 546