A Fractal Operator Associated with Bivariate Fractal Interpolation Functions on Rectangular Grids

被引:0
|
作者
S. Verma
P. Viswanathan
机构
[1] Indian Institute of Technology Delhi,
来源
Results in Mathematics | 2020年 / 75卷
关键词
Fractal interpolation surfaces; bivariate ; -fractal functions; fractal operator; approximation; 28A80; 41A17; 41A30; 26A27;
D O I
暂无
中图分类号
学科分类号
摘要
A general framework to construct fractal interpolation surfaces (FISs) on rectangular grids was presented and bilinear FIS was deduced by Ruan and Xu (Bull Aust Math Soc 91(3):435–446, 2015). From the view point of operator theory and the stand point of developing some approximation aspects, we revisit the aforementioned construction to obtain a fractal analogue of a prescribed continuous function defined on a rectangular region in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}. This approach leads to a bounded linear operator analogous to the so-called α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-fractal operator associated with the univariate fractal interpolation function. Several elementary properties of this bivariate fractal operator are reported. We extend the fractal operator to the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}^p$$\end{document}-spaces for 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p < \infty $$\end{document}. Some approximation aspects of the bivariate continuous fractal functions are also discussed.
引用
收藏
相关论文
共 50 条