Solution of several functional equations on abelian groups with involution

被引:0
|
作者
Fadli B. [1 ]
Zeglami D. [2 ]
Kabbaj S. [1 ]
机构
[1] Department of Mathematics, Faculty of Sciences, Ibn Tofail University, BP 14000, Kenitra
[2] Department of Mathematics, E.N.S.A.M, Moulay Ismail University, Al Mansour, BP 15290, Meknes
关键词
d’Alembert; Functional equation; Gajda; Involution; Wilson;
D O I
10.1007/s13370-017-0521-9
中图分类号
学科分类号
摘要
Let G be a locally compact abelian Hausdorff group, let σ be a continuous involution on G, and let μ, ν be regular, compactly supported, complex-valued Borel measures on G. We determine the continuous solutions f, g: G→ C of each of the two functional equations ∫Gf(x+y+t)dμ(t)+∫Gf(x+σ(y)+t)dν(t)=f(x)g(y),x,y∈G,∫Gf(x+y+t)dμ(t)+∫Gf(x+σ(y)+t)dν(t)=g(x)f(y),x,y∈G,in terms of characters and additive functions. These equations provides a common generalization of many functional equations such as d’Alembert’s, Cauchy’s, Gajda’s, Kannappan’s, Van Vleck’s, or Wilson’s equations. So, several functional equations will be solved. © 2017, African Mathematical Union and Springer-Verlag GmbH Deutschland.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条