Electric field-induced chemical locomotion of conducting objects
被引:0
|
作者:
Gabriel Loget
论文数: 0引用数: 0
h-index: 0
机构:Université de Bordeaux,
Gabriel Loget
Alexander Kuhn
论文数: 0引用数: 0
h-index: 0
机构:Université de Bordeaux,
Alexander Kuhn
机构:
[1] Université de Bordeaux,
[2] ISM,undefined
[3] UMR 5255,undefined
[4] ENSCBP 16 avenue Pey Berland,undefined
[5] 33607 Pessac,undefined
[6] France.,undefined
来源:
Nature Communications
|
/
2卷
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Externally triggered motion of small objects has potential in applications ranging from micromachines, to drug delivery, and self-assembly of superstructures. Here we present a new concept for the controlled propulsion of conducting objects with sizes ranging from centimetres to hundreds of micrometres. It is based on their polarization, induced by an electric field, which triggers spatially separated oxidation and reduction reactions involving asymmetric gas bubble formation. This in turn leads to a directional motion of the objects. Depending on the implied redox chemistry and the device design, the speed can be controlled and the motion can be switched from linear to rotational. This type of chemical locomotion is an alternative to existing approaches based on other principles.