Analysis of financial data series using fractional Fourier transform and multidimensional scaling

被引:0
|
作者
J. Tenreiro Machado
Fernando B. Duarte
Gonçalo Monteiro Duarte
机构
[1] Institute of Engineering,Dept. of Electrical Engineering
[2] School of Technology,Dept. of Mathematics
[3] Lusofona University,undefined
来源
Nonlinear Dynamics | 2011年 / 65卷
关键词
Financial data series; Fractional Fourier transform; Multidimensional scaling; Fractional calculus;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
引用
收藏
页码:235 / 245
页数:10
相关论文
共 50 条
  • [1] Analysis of financial data series using fractional Fourier transform and multidimensional scaling
    Tenreiro Machado, J.
    Duarte, Fernando B.
    Duarte, Goncalo Monteiro
    NONLINEAR DYNAMICS, 2011, 65 (03) : 235 - 245
  • [2] Multidimensional fractional Fourier transform and generalized fractional convolution
    Kamalakkannan, R.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (02) : 152 - 165
  • [3] Range Doppler and chirp scaling processing of synthetic aperture radar data using the fractional Fourier transform
    Clemente, C.
    Soraghan, J. J.
    IET SIGNAL PROCESSING, 2012, 6 (05) : 503 - 510
  • [4] The minimality of mean square error in chirp approximation using fractional fourier series and fractional fourier transform
    Bafakeeh, Omar T.
    Yasir, Muhammad
    Raza, Ali
    Khan, Sami Ullah
    Kumar, R. Naveen
    Khan, M. Ijaz
    Almaleki, Deyab A.
    Ben Khedher, Nidhal
    Eldin, Sayed M.
    Galal, Ahmed M.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] Multidimensional short-time fractional Fourier transform
    Sandikci, Ayse
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025,
  • [6] The minimality of mean square error in chirp approximation using fractional fourier series and fractional fourier transform
    Omar T. Bafakeeh
    Muhammad Yasir
    Ali Raza
    Sami Ullah Khan
    R. Naveen Kumar
    M. Ijaz Khan
    Deyab A. Almaleki
    Nidhal Ben Khedher
    Sayed M. Eldin
    Ahmed M. Galal
    Scientific Reports, 12
  • [7] Experimental considerations and scaling property of the fractional Fourier transform
    Lohmann, AW
    Zalevsky, Z
    Dorsch, RG
    Mendlovic, D
    OPTICS COMMUNICATIONS, 1998, 146 (1-6) : 55 - 61
  • [8] Fractional Fourier Transform in Time Series Prediction
    Koc, Emirhan
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2542 - 2546
  • [9] Fractional Fourier Transform in Time Series Prediction
    Koc, Emirhan
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2542 - 2546
  • [10] Analysis of the asymmetric apodization using the fractional Fourier transform
    Granieri, S
    Zalvidea, D
    Sicre, EE
    JOURNAL OF MODERN OPTICS, 1999, 46 (07) : 1155 - 1159