This article analyses the available inputs in B → πℓνℓ and B → ρℓνℓ decays which include the measured values of differential rate in different q2-bins (lepton invariant mass spectrum), lattice, and the newly available inputs on the relevant form-factors from the light-cone sum rules (LCSR) approach. We define different fit scenarios, and in each of these scenarios, we predict a few observables in the standard model (SM). For example, RM=BB→MℓiνℓiBB→Mℓjνℓj,RℓjℓiM=BB→ℓiνℓiBB→Mℓjνℓj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ R(M)=\frac{\mathcal{B}\left(B\to M{\ell}_i{\nu}_{\ell_i}\right)}{\mathcal{B}\left(B\to M{\ell}_j{\nu}_{\ell_j}\right)},{R}_{\ell_j}^{\ell_i}(M)=\frac{\mathcal{B}\left(B\to {\ell}_i{\nu}_{\ell_i}\right)}{\mathcal{B}\left(B\to M{\ell}_j{\nu}_{\ell_j}\right)} $$\end{document} with M = π or ρ and ℓi,j = e, μ or τ. We also discuss the new physics (NP) sensitivities of all these observables and obtain bounds on a few NP Wilson coefficients in b → uτντ decays using the available data. We have noted that the data at present allows sizeable NP contributions in this mode. Also, we have predicted a few angular observables relevant to these decay modes.