Forced Vibrations via Nash-Moser Iteration

被引:0
|
作者
Jean-Marcel Fokam
机构
[1] McMaster University,Department of Mathematics and Statistics
[2] American University of Nigeria,undefined
来源
关键词
Periodic Solution; Free Vibration; Implicit Function Theorem; Nonlinear Wave Equation; Contraction Mapping Principle;
D O I
暂无
中图分类号
学科分类号
摘要
We construct time periodic solutions for a cubic nonlinear wave equation with time-dependent forcing term.
引用
收藏
页码:285 / 304
页数:19
相关论文
共 50 条
  • [1] Forced vibrations via Nash-Moser iteration
    Fokam, Jean-Marcel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (02) : 285 - 304
  • [2] Nash-Moser iteration and singular perturbations
    Texier, Benjamin
    Zumbrun, Kevin
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (04): : 499 - 527
  • [3] A Nash-Moser Approach to KAM Theory
    Berti, Massimiliano
    Bolle, Philippe
    HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, : 255 - 284
  • [4] STEADY THREE-DIMENSIONAL ROTATIONAL FLOWS: AN APPROACH VIA TWO STREAM FUNCTIONS AND NASH-MOSER ITERATION
    Buffoni, Boris
    Wahlen, Erik
    ANALYSIS & PDE, 2019, 12 (05): : 1225 - 1258
  • [5] ON THE NASH-MOSER IMPLICIT FUNCTION THEOREM
    HORMANDER, L
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01): : 255 - 259
  • [6] Nash-Moser theory for standing water waves
    Plotnikov, PI
    Toland, JF
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (01) : 1 - 83
  • [7] Nash-Moser theorem and nonlinear hyperbolic equations
    Di Flaviano, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A (03): : 327 - 330
  • [8] A NOTE ON THE NASH-MOSER IMPLICIT FUNCTION THEOREM
    ASANO, K
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (05) : 139 - 142
  • [9] A local inversion principle of the Nash-Moser type
    Castro, A
    Neuberger, JW
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) : 989 - 993
  • [10] Nash-Moser Theory for Standing Water Waves
    P. I. Plotnikov
    J. F. Toland
    Archive for Rational Mechanics and Analysis, 2001, 159 : 1 - 83