Haar Frame Characterizations of Besov–Sobolev Spaces and Optimal Embeddings into Their Dyadic Counterparts

被引:0
|
作者
Gustavo Garrigós
Andreas Seeger
Tino Ullrich
机构
[1] University of Murcia,Department of Mathematics
[2] University of Wisconsin,Department of Mathematics
[3] Technische Universität Chemnitz,Fakultät für Mathematik
关键词
Haar system; Haar frames; Sobolev spaces; Besov and Triebel–Lizorkin spaces; Dyadic versions of function spaces; Wavelets; Splines; 46E35; 46B15; 42C40; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior of Haar coefficients in Besov and Triebel–Lizorkin spaces on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}$$\end{document}, for a parameter range in which the Haar system is not an unconditional basis. First, we obtain a range of parameters, extending up to smoothness s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<1$$\end{document}, in which the spaces Fp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^s_{p,q}$$\end{document} and Bp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{p,q}$$\end{document} are characterized in terms of doubly oversampled Haar coefficients (Haar frames). Secondly, in the case that 1/p<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p<s<1$$\end{document} and f∈Bp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in B^s_{p,q}$$\end{document}, we actually prove that the usual Haar coefficient norm, ‖{2j⟨f,hj,μ⟩}j,μ‖bp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \{2^j\langle f, h_{j,\mu }\rangle \}_{j,\mu }\Vert _{b^s_{p,q}}$$\end{document} remains equivalent to ‖f‖Bp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert f\Vert _{B^s_{p,q}}$$\end{document}, i.e., the classical Besov space is a closed subset of its dyadic counterpart. At the endpoint case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} and q=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=\infty $$\end{document}, we show that such an expression gives an equivalent norm for the Sobolev space Wp1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1}_p({\mathbb R})$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}, which is related to a classical result by Bočkarev. Finally, in several endpoint cases we give optimal inclusions between Bp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{p,q}$$\end{document}, Fp,qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^s_{p,q}$$\end{document}, and their dyadic counterparts.
引用
收藏
相关论文
共 33 条
  • [1] Haar Frame Characterizations of Besov-Sobolev Spaces and Optimal Embeddings into Their Dyadic Counterparts
    Garrigos, Gustavo
    Seeger, Andreas
    Ullrich, Tino
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (03)
  • [2] Embeddings of anisotropic Besov spaces into Sobolev spaces
    Bartusel, David
    Fuehr, Hartmut
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1380 - 1393
  • [3] OPTIMAL EMBEDDINGS OF GENERALIZED BESOV SPACES
    Bashir, Zia
    Karadzhov, Georgi E.
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (06): : 799 - 806
  • [4] Entropy numbers of Sobolev embeddings of radial Besov spaces
    Kühn, T
    Leopold, HG
    Sickel, W
    Skrzypczak, L
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 121 (02) : 244 - 268
  • [5] OPTIMAL EMBEDDINGS OF GENERALIZED BESOV SPACES
    Bashir, Z.
    Karadzhov, G. E.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (01): : 5 - 31
  • [6] ENTROPY NUMBERS OF EMBEDDINGS OF FRACTIONAL BESOV-SOBOLEV SPACES IN ORLICZ SPACES
    EDMUNDS, DE
    EDMUNDS, RM
    TRIEBEL, H
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 35 : 121 - 134
  • [7] CHARACTERIZATIONS OF BESOV-HARDY-SOBOLEV SPACES - A UNIFIED APPROACH
    TRIEBEL, H
    [J]. JOURNAL OF APPROXIMATION THEORY, 1988, 52 (02) : 162 - 203
  • [8] OPTIMAL EMBEDDINGS OF GENERALIZED HOMOGENEOUS SOBOLEV SPACES
    Ahmed, Irshaad
    Karadzhov, Georgi Eremiev
    [J]. COLLOQUIUM MATHEMATICUM, 2011, 123 (01) : 1 - 20
  • [9] OPTIMAL EMBEDDINGS OF GENERALIZED INHOMOGENEOUS SOBOLEV SPACES
    Ahmed, Irshaad
    Karadzhov, Georgi E.
    Reza, Ali
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (08): : 1061 - 1066
  • [10] Optimal embeddings of generalized homogeneous Sobolev spaces
    Ahmed, Irshaad
    Karadzhov, Georgi E.
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (08): : 967 - 972