High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks

被引:0
|
作者
Alvin Rajkomar
Sneha Lingam
Andrew G. Taylor
Michael Blum
John Mongan
机构
[1] University of California,Department of Medicine, Division of Hospital Medicine
[2] San Francisco,Center for Digital Health Innovation
[3] University of California,Department of Radiology and Biomedical Imaging
[4] San Francisco,undefined
[5] University of California,undefined
[6] San Francisco,undefined
来源
关键词
Radiography; Chest radiographs; Machine learning; Artificial neural networks; Computer vision; Deep learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and July 2015 at our institution were retrieved and anonymized. The source images were manually annotated as frontal or lateral and randomly divided into training, validation, and test sets. Training and validation sets were augmented to over 150,000 images using standard image manipulations. We then pre-trained a series of deep convolutional networks based on the open-source GoogLeNet with various transformations of the open-source ImageNet (non-radiology) images. These trained networks were then fine-tuned using the original and augmented radiology images. The model with highest validation accuracy was applied to our institutional test set and a publicly available set. Accuracy was assessed by using the Youden Index to set a binary cutoff for frontal or lateral classification. This retrospective study was IRB approved prior to initiation. A network pre-trained on 1.2 million greyscale ImageNet images and fine-tuned on augmented radiographs was chosen. The binary classification method correctly classified 100 % (95 % CI 99.73–100 %) of both our test set and the publicly available images. Classification was rapid, at 38 images per second. A deep convolutional neural network created using non-radiological images, and an augmented set of radiographs is effective in highly accurate classification of chest radiograph view type and is a feasible, rapid method for high-throughput annotation.
引用
收藏
页码:95 / 101
页数:6
相关论文
共 50 条
  • [1] High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
    Rajkomar, Alvin
    Lingam, Sneha
    Taylor, Andrew G.
    Blum, Michael
    Mongan, John
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (01) : 95 - 101
  • [2] Classification of racehorse limb radiographs using deep convolutional neural networks
    Costa da Silva, Raniere Gaia
    Mishra, Ambika Prasad
    Riggs, Christopher Michael
    Doube, Michael
    VETERINARY RECORD OPEN, 2023, 10 (01)
  • [3] Automated abnormality classification of chest radiographs using deep convolutional neural networks
    Yu-Xing Tang
    You-Bao Tang
    Yifan Peng
    Ke Yan
    Mohammadhadi Bagheri
    Bernadette A. Redd
    Catherine J. Brandon
    Zhiyong Lu
    Mei Han
    Jing Xiao
    Ronald M. Summers
    npj Digital Medicine, 3
  • [4] Automated abnormality classification of chest radiographs using deep convolutional neural networks
    Tang, Yu-Xing
    Tang, You-Bao
    Peng, Yifan
    Yan, Ke
    Bagheri, Mohammadhadi
    Redd, Bernadette A.
    Brandon, Catherine J.
    Lu, Zhiyong
    Han, Mei
    Xiao, Jing
    Summers, Ronald M.
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [5] Multi-labelled proteins recognition for high-throughput microscopy images using deep convolutional neural networks
    Enze Zhang
    Boheng Zhang
    Shaohan Hu
    Fa Zhang
    Zhiyong Liu
    Xiaohua Wan
    BMC Bioinformatics, 22
  • [6] Multi-labelled proteins recognition for high-throughput microscopy images using deep convolutional neural networks
    Zhang, Enze
    Zhang, Boheng
    Hu, Shaohan
    Zhang, Fa
    Liu, Zhiyong
    Wan, Xiaohua
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 3)
  • [7] An Automatic RTL Compiler for High-Throughput FPGA Implementation of Diverse Deep Convolutional Neural Networks
    Ma, Yufei
    Cao, Yu
    Vrudhula, Sarma
    Seo, Jae-sun
    2017 27TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2017,
  • [8] Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks
    Moran, Maira
    Faria, Marcelo
    Giraldi, Gilson
    Bastos, Luciana
    Oliveira, Larissa
    Conci, Aura
    SENSORS, 2021, 21 (15)
  • [9] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [10] Flower classification using deep convolutional neural networks
    Hiary, Hazem
    Saadeh, Heba
    Saadeh, Maha
    Yaqub, Mohammad
    IET COMPUTER VISION, 2018, 12 (06) : 855 - 862