Bessel Potentials in Ahlfors Regular Metric Spaces

被引:0
|
作者
Miguel Andrés Marcos
机构
[1] Instituto de Matemática Aplicada del Litoral,
[2] UNL,undefined
[3] CONICET,undefined
[4] FIQ,undefined
来源
Potential Analysis | 2016年 / 45卷
关键词
Bessel potential; Ahlfors spaces; Fractional derivative; Sobolev spaces; Besov spaces; 43A85;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce Bessel potentials and the Sobolev potential spaces resulting from them in the context of Ahlfors regular metric spaces. The Bessel kernel is defined using a Coifman type approximation of the identity, and we show integration against it improves the regularity of Lipschitz, Besov and Sobolev-type functions. For potential spaces, we prove density of Lipschitz functions, and several embedding results, including Sobolev-type embedding theorems. Finally, using singular integrals techniques such as the T1 theorem, we find that for small orders of regularity Bessel potentials are inversible, its inverse in terms of the fractional derivative, and show a way to characterize potential spaces, concluding that a function belongs to the Sobolev potential space if and only if itself and its fractional derivative are in Lp. Moreover, this characterization allows us to prove these spaces in fact coincide with the classical potential Sobolev spaces in the Euclidean case.
引用
收藏
页码:201 / 227
页数:26
相关论文
共 50 条
  • [1] Bessel Potentials in Ahlfors Regular Metric Spaces
    Andres Marcos, Miguel
    POTENTIAL ANALYSIS, 2016, 45 (02) : 201 - 227
  • [2] Ahlfors-regular curves in metric spaces
    Schul, Raanan
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2007, 32 (02) : 437 - 460
  • [3] Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces Preface
    Alvarado, Ryan
    Mitrea, Marius
    HARDY SPACES ON AHLFORS-REGULAR QUASI METRIC SPACES: A SHARP THEORY, 2015, 2142 : V - +
  • [4] Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces Introduction
    Alvarado, Ryan
    Mitrea, Marius
    HARDY SPACES ON AHLFORS-REGULAR QUASI METRIC SPACES: A SHARP THEORY, 2015, 2142 : 1 - 31
  • [5] Weak Capacity and Modulus Comparability in Ahlfors Regular Metric Spaces
    Lindquist, Jeff
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 399 - 424
  • [6] Potential Theory on Trees, Graphs and Ahlfors-regular Metric Spaces
    Arcozzi, Nicola
    Rochberg, Richard
    Sawyer, Eric T.
    Wick, Brett D.
    POTENTIAL ANALYSIS, 2014, 41 (02) : 317 - 366
  • [8] Potential Theory on Trees, Graphs and Ahlfors-regular Metric Spaces
    Nicola Arcozzi
    Richard Rochberg
    Eric T. Sawyer
    Brett D. Wick
    Potential Analysis, 2014, 41 : 317 - 366
  • [9] Metric quasiconformality and Sobolev regularity in non-Ahlfors regular spaces
    Lahti, Panu
    Zhou, Xiaodan
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [10] Generalized Bessel and Riesz Potentials on Metric Measure Spaces
    J. Hu
    M. Zähle
    Potential Analysis, 2009, 30