Isomorphisms and functors of fuzzy sets and cut systems

被引:0
|
作者
Jiří Močkoř
机构
[1] Institute for Research and Applications of Fuzzy Modeling,Centre of Excellence IT4Innovations, Division of the University of Ostrava
来源
Soft Computing | 2014年 / 18卷
关键词
Fuzzy Sets; Contravariant Version; Natural Isomorphism; Extension Principle; Covariant Functor;
D O I
暂无
中图分类号
学科分类号
摘要
Any fuzzy set X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} in a classical set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} with values in a complete (residuated) lattice Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q$$\end{document} can be identified with a system of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cuts Xα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{\alpha }$$\end{document}, α∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in Q$$\end{document}. Analogical results were proved for sets with similarity relations with values in Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q$$\end{document} (e.g. Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q$$\end{document}-sets), which are objects of two special categories K=Set(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf K}={Set}( Q)$$\end{document} or SetR(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SetR}( Q)$$\end{document} of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q$$\end{document}-sets, and for fuzzy sets defined as morphisms from an Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q$$\end{document}-set into a special Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-set (Q,↔)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( Q,\leftrightarrow )$$\end{document}. These fuzzy sets can be defined equivalently as special cut systems (Cα)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C_{\alpha })_{\alpha }$$\end{document}, called f-cuts. This equivalence then represents a natural isomorphism between covariant functor of fuzzy sets FK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}_{\mathbf K}$$\end{document} and covariant functor of f-cuts CK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}_{\mathbf K}$$\end{document}. In this paper, we prove that analogical natural isomorphism exists also between contravariant versions of these functors. We are also interested in relationships between sets of fuzzy sets and sets of f-cuts in an Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-set (A,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\delta )$$\end{document} in the corresponding categories Set(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Set}( Q)$$\end{document} and SetR(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SetR}( Q)$$\end{document}, which are endowed with binary operations extended either from binary operations in the lattice Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}, or from binary operations defined in a set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} by the generalized Zadeh’s extension principle. We prove that the resulting binary structures are (under some conditions) isomorphic.
引用
收藏
页码:1237 / 1245
页数:8
相关论文
共 50 条
  • [1] Isomorphisms and functors of fuzzy sets and cut systems
    Mockor, Jiri
    [J]. SOFT COMPUTING, 2014, 18 (07) : 1237 - 1245
  • [2] Isomorphisms of Fuzzy Sets and Cut Systems
    Mockor, Jiri
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I, 2013, 7902 : 385 - 392
  • [3] Operations in fuzzy sets and cut systems
    Mockor, Jiri
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1, 2014, : 416 - 421
  • [4] Reflective categories of cut systems and fuzzy sets in Ω-sets
    Mockor, Jiri
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 45 - 50
  • [5] Fuzzy sets and cut systems in a category of sets with similarity relations
    Jiří Močkoř
    [J]. Soft Computing, 2012, 16 : 101 - 107
  • [6] Fuzzy Sets, Cut Systems and Closure Operators in Sets with Similarities
    Mockor, Jiri
    [J]. PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 14 - 20
  • [7] Fuzzy sets and cut systems in a category of sets with similarity relations
    Mockor, Jiri
    [J]. SOFT COMPUTING, 2012, 16 (01) : 101 - 107
  • [8] Three new cut sets of fuzzy sets and new theories of fuzzy sets
    Yuan, Xue-hai
    Li, Hongxing
    Lee, E. Stanley
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (05) : 691 - 701
  • [9] ON ISOMORPHISMS OF CERTAIN FUNCTORS FOR CHEREDNIK ALGEBRAS
    Losev, Ivan
    [J]. REPRESENTATION THEORY, 2013, 17 : 247 - 262
  • [10] SOME ISOMORPHISMS IN DERIVED FUNCTORS AND THEIR APPLICATIONS
    Khashyarmanesh, K.
    Khosh-Ahang, F.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 94 (02) : 222 - 233